Skip to main content

Advanced fMRI and the Brain Computer Interface

  • Chapter
  • First Online:
Brain-Computer Interfaces

Abstract

Electrical signals generated by the brain which give rise to the EEG signal on the scalp create a magnetic field at the neuronal source of around 1 nano-Tesla (nT). Several authors have shown that changes in magnetic field of this order can be directly detected electromagnetically through MR signal modulation by high sensitivity MRI systems. An interesting fact is that this direct electromagnetic effect is independent of the strength of the magnetic field which is used for detection. Instead it is the stability of the system which controls the ability to detect such weak electromagnetic fields. This opens up the possibility of using low cost, open, low field strength MRI systems for dfMRI brain computer interfaces. Some authors have proposed the use of SQUID detection of fMRI at ultra-low field. Instead, we propose use of an intermediate, low cost, open MRI system used in conjunction with advance sensitivity enhancement methods such as cryogenic radiofrequency array coils together with polarization enhancement through the nuclear Overhauser effect (producing enhancements of ~10x) and dynamic nuclear polarization (producing enhancements of ~10,000x). Whilst this development is still in its infancy, much of the underlying technology required has already been proven and our future challenge is to integrate these sub-systems into a functional dfMRI based BCI device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ardenkjaer-Larsen, J.H., Fridlund, B., Gram, A., Hanssonn, G., Hansson, L., Lerche, M.H., Servin, R., Thaning, M., Golman, K.: Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. U. S. A. 100(1), 10158–10163 (2005)

    Google Scholar 

  2. Ardenkjaer-Larsen, J.H., Leach, A.M., Clarke, N., Urbahn, J., Anderson, D., Skloss, T.W.: Dynamic nuclear polarization polarizer for sterile use intent. NMR Biomed. 24(1), 927–932 (2011)

    Article  Google Scholar 

  3. Azar, A.T., Balas, V.E., Olariu, T.: Classification of EEG-based brain-computer interfaces. Advanc. Intell. Comput. Technol. Decis. Support Syst. Studies Comput. Intell. 486(2014), 97–106 (2014)

    Google Scholar 

  4. Barber, D.C., Brown, B.H.: Imaging spatial distributions of resistivity using applied potential tomography. Electronics Lett. 19(22), 933–935 (1983)

    Article  Google Scholar 

  5. Bechtereva, N.P., Abdullaev, Y.G.: Depth electrodes in clinical neurophysiology: neuronal activity and human cognitive function. Int. J. Psychophysiol. 37(1), 11–29 (2000)

    Article  Google Scholar 

  6. Benial, A.M.F., Ichikawa, K., Murugesan, R., Yamada, K., Utsumi, H.: Dynamic nuclear polarization properties of nitroxyl radicals used in Overhauser-enhanced MRI for simultaneous molecular imaging. J. Magn. Reson. 182(1), 273–282 (2006)

    Article  Google Scholar 

  7. Bodurka, J., Bandettini, P.A.: Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes. Magn. Reson. Med. 47(6), 1052–1058 (2002)

    Article  Google Scholar 

  8. Bodurka, J., Jesmanowicz, A., Hyde, J.S., Xu, H., Estkowski, L., Li, S.J.: Current induced magnetic resonance phase imaging. J. Magn. Reson. 137(1), 265–271 (1999)

    Article  Google Scholar 

  9. Cheong, H.S., Wild, J., Alford, N., Valkov, I., Randell, C., Paley, M.: A high temperature superconducting imaging coil for low-field MRI. Concept Magn. Reson. B 37B(2), 56–64 (2010)

    Article  Google Scholar 

  10. Chow, L.S., Cook, G.G., Whitby, E., Paley, M.N.: Investigating direct detection of axon firing in the adult human optic nerve using MRI. Neuroimage 30(3), 835–846 (2006)

    Article  Google Scholar 

  11. Chow, L.S., Cook, G.G., Whitby, E., Paley, M.N.: Investigation of MR signal modulation due to magnetic fields from neuronal currents in the adult human optic nerve and visual cortex. Magn. Reson. Imag. 24(6), 681–691 (2006)

    Article  Google Scholar 

  12. Chow, L.S., Cook, G.G., Whitby, E., Paley, M.N.: Investigation of axonal magnetic fields in the human corpus callosum using visual stimulation based on MR signal modulation. J. Magn. Reson. Imag. 26(2), 265–273 (2007)

    Article  Google Scholar 

  13. Chow, L.S., Dagens, A., Fu, Y., Cook, G.G., Paley, M.N.: Comparison of BOLD and direct-MR neuronal detection (DND) in the human visual cortex at 3T. Magn. Reson. Med. 60(5), 1147–1154 (2008)

    Article  Google Scholar 

  14. de Sousa, P.L., de Souza, R.E., Engelsberg, M., Colnago, L.A.: Mobility and free radical concentration effects in proton-electron double-resonance imaging. J. Magn. Reson. 135(1), 118–125 (1998)

    Article  Google Scholar 

  15. Dwek, R.A., Richards, R.E., Taylor, D.: Nuclear electron double resonance in liquids. Annu. Rev. NMR Spectrosc. 2(1), 293–344 (1969)

    Article  Google Scholar 

  16. Eyuboglu, B.M., Reddy, R., Leigh, J.S.: Imaging electrical current density using nuclear magnetic resonance. Elektrik 6(1), 201–214 (1998)

    Google Scholar 

  17. Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Müller, K.-R., Blankertz, N.: Enhanced performance by a hybrid NIRS-EEG brain computer interface. NeuroImage 59(1), 519–529 (2012)

    Article  Google Scholar 

  18. Gratton, G., Fabiani, M.: Fast optical signals: principles, methods and experimental results. In: Frostig, R.D. (ed.) In vivo optical imaging of brain function. CRC Press, Boca Raton (2002)

    Google Scholar 

  19. Guiberteau, T., Grucker, D.: Dynamic nuclear polarization at very low magnetic fields. Phys. Med. Biol. 43(1), 1887–1892 (1998)

    Article  Google Scholar 

  20. Hamalainen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(1), 413–497 (1993)

    Article  Google Scholar 

  21. Hennig, J., Speck, O., Koch, M.A., Weiller, C.: Functional magnetic resonance imaging: a review of methodological aspects and clinical applications. J. Magn. Reson. Imag. 18(1), 1–15 (2003)

    Article  Google Scholar 

  22. Joy, M., Scott, G., Henkelman, M.: In vivo detection of applied electric currents by magnetic resonance imaging. Magn. Reson. Imag. 7(1), 89–94 (1989)

    Article  Google Scholar 

  23. Kaka, S., Paley, M.: Investigating possible fMRI responses in the median nerve during wrist stimulation by Transcutaneous Electrical Nerve Stimulation (TENS). In: Proceedings of the ISMRM and ESMRMB Joint Annual Scientific Meeting, p. 1,783. Milan, May 2014

    Google Scholar 

  24. Kamei, H.I.K., Yshikawa, K., Ueno, S.: Neuronal current distribution imaging using magnetic resonance. IEEE Trans. Magn. 35(1), 4109–4111 (1999)

    Article  Google Scholar 

  25. Kazan, S.M., Reynolds, S., Kennerley, A., Wholey, E., Bluff, J.E., Berwick, J., Cunningham, V.J., Paley, M.N., Tozer, G.M.: Kinetic modeling of hyperpolarized 13C pyruvate metabolism in tumors using a measured arterial input function. Magn. Reson. Med. 70(4), 943–953 (2013)

    Article  Google Scholar 

  26. Konn, D., Gowland, P., Bowtell, R.: Towards the direct detection of neuronal activity in the brain: simulating and measuring the magnetic field from an extended current dipole in a homogeneous conducting sphere. In: Proceedings of the 10th Annual Meeting of ISMRM, p. 1,326, Hawaii (2002)

    Google Scholar 

  27. Krishna, M.C., Devasahayam, N., Cook, J.A., Subramanian, S., Kuppusamy, P., Mitchell, J.B.: Electron paramagnetic resonance for small animal imaging applications. ILAR J. 42(1), 209–218 (2001)

    Article  Google Scholar 

  28. Krishna, M.C., English, S., Yamada, K., Yoo, J., Murugesan, R., Devasahayam, N., Cook, J.A., Golman, K., Ardenkjaer-Larsen, J.H., Subramanian, S., Mitchell, J.B.: Overhauser enhanced magnetic resonance imaging for tumor oximetry: coregistration of tumor anatomy and tissue oxygen concentration. PNAS 99(4), 523–529 (2002)

    Article  Google Scholar 

  29. Krjukov, E., Fichele, S., Wild, J.M., Paley, M.N.J.: Design and evaluation of a low field system for hyperpolarized 3-He gas imaging of neonatal lungs. Conc. Magn. Reson. Part B 31B, 209–217 (2007)

    Google Scholar 

  30. Kurhanewicz, J., Vigneron, D.B., Brindle, K., Chekmenev, E.Y., Comment, A., Cunningham, C.H., Deberardinis, R.J., Green, G.G., Leach, M.O., Rajan, S.S., Rizi, R.R., Ross, B.D., Warren, W.S., Malloy, C.R.: Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13(2), 81–97 (2011)

    Google Scholar 

  31. Liu, A.K., Dale, A.M., Belliveau, J.W.: Monte Carlo simulation studies of EEG and MEG localization accuracy. Hum. Brain Mapp. 16(1), 47–62 (2002)

    Article  Google Scholar 

  32. Logothethis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6183), 150–157 (2001)

    Article  Google Scholar 

  33. Lurie, D.J., Bussell, D.M., Bell, L.H., Mallard, J.R.: Proton-electron double magnetic resonance imaging of free radical solutions. J. Magn. Reson. 76(1), 366–370 (1988)

    Google Scholar 

  34. Lurie, D.J., Foster, M.A., Yeung, D., Hutchison, J.M.S.: Design, construction and use of a large-sample field-cycled PEDRI imager. Phys. Med. Biol. 43(1), 1877–1886 (1998)

    Article  Google Scholar 

  35. Matsumoto, S., Yamada, K., Hirata, H., Yasukawa, K., Hyodo, F., Ichikawa, K., Utsumi, H.: Advantageous application of a surface coil to EPR irradiation in Overhauser-enhanced MRI. Magn. Reson. Med. 57(4), 806–811 (2007)

    Article  Google Scholar 

  36. Mullinger, K., Richard, Bowtell R.: Combining EEG and fMRI. Magnetic resonance neuroimaging methods in molecular biology 711(1), 303–326 (2011)

    Article  Google Scholar 

  37. Ogawa, S., Lee, T.M., Kay, A.R., Tank, D.W.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. U.S.A. 87(1), 9868–9872 (1990)

    Article  Google Scholar 

  38. Paley, M.N.J., Kryukov, E., Lamperth, M., Young, I.R.: An independent multichannel imaging research system for ultrashort echo time imaging on clinical MR systems. Concepts Magn. Reson. Part B (Magn. Reson. Eng.) 35B(2), 80–88 (2009)

    Article  Google Scholar 

  39. Paley, M.N.J., Chow, L.S., Whitby, E.H., Cook, G.G.: Modelling of axonal fields in the optic nerve for direct MR detection studies. Image Vision Comput. 27(4), 331–341 (2009)

    Article  Google Scholar 

  40. Planinsic, G., Guiberteau, T., Grucker, D.: Dynamic nuclear polarization imaging at very low magnetic fields. J. Magn. Reson. B110, 205–209 (1996)

    Article  Google Scholar 

  41. Puwanich, P., Lurie, D.J., Foster, M.A.: Rapid imaging of free radicals in vivo using field cycled PEDRI. Phys. Med. Biol. 44(1), 2867–2877 (1999)

    Article  Google Scholar 

  42. Raichle, M.E.: Bold insights. Nature 412(1), 128–130 (2001)

    Google Scholar 

  43. Reynolds, S., Bucur, A., Port, M., Alizadeh, T., Kazan, S.M., Tozer, G.M., Paley, M.N.: A system for accurate and automated injection of hyperpolarized substrate with minimal dead time and scalable volumes over a large range. J. Magn. Reson. 239C, 1–8 (2013)

    Google Scholar 

  44. Reynolds, S., Kazan, S.M., Bluff, J.E., Port, M., Wholey, E., Tozer, G.M., Paley, M.N.J.: Fully MR compatible syringe pump for the controllable injection of hyperpolarized substrate in animals. Appl. Magn. Reson. 43(1), 263–273 (2012)

    Article  Google Scholar 

  45. Scott, G.C., Joy, M.L.G., Armstrong, R.L., Henkelman, R.M.: Sensitivity of magnetic resonance current density imaging. JMR 97(1), 235–254 (1992)

    Google Scholar 

  46. Scott, G.C., Joy, M.L.G., Armstrong, R.L., Henkelman, R.M.: Rotating frame current density imaging. Magn. Reson. Med. 33(3), 355–369 (1995)

    Article  Google Scholar 

  47. Shah, N.J., Oros-Peusquens, A.-M., Arrubla, J., Zhang, K., Warbrick, T., Mauler, J., Vahedipour, K., Romanzetti, S., Felder, J., Celik, A., Rota-Kops, E., Iida, H., Langen, K.-J., Herzog, H., Neuner, I.: Advances in multimodal neuroimaging: Hybrid MR-PET and MR-PET-EEG at 3 T and 9.4 T. J. Magn. Reson. 229(1), 101–115 (2013)

    Article  Google Scholar 

  48. Singh, M.: Sensitivity of MR phase shift to detect evoked neuromagnetic fields inside the head. IEEE Trans. Nucl. Sci. 41(1), 349–351 (1994)

    Article  Google Scholar 

  49. Utsumi, H., Yamada, K., Ichikawa, K., Sakai, K., Kinoshita, Y., Matsumoto, S., Nagai, M.: Simultaneous molecular imaging of redox reactions monitored by Overhauser-enhanced MRI with 14 N- and 15 N-labeled nitroxyl radicals. PNAS 103(5), 1463–1468 (2006)

    Article  Google Scholar 

  50. Witney, T.H., Kettunen, M.I., Hu, D.E., Gallagher, F.A., Bohndiek, S.E., Napolitano, R., Brindle, K.M.: Detecting treatment response in a model of human breast adenocarcinoma using hypepolarized [1-13C]pyruvate and [1,4-13C2] fumarate. Br. J. Cancer 103(1), 1400–1406 (2010)

    Article  Google Scholar 

  51. Whitby, E.H., Griffiths, P.D., Rutter, S., Smith, M.F., Sprigg, A., Ohadike, P., Paley, M.N.J.: Frequency and natural history of subdural haemorrhages in babies and relation to obstetric factors. Lancet 363(9412), 846–851 (2004)

    Article  Google Scholar 

  52. Yang, H., Cook, G.G., Paley, M.N.: Mapping of periodic waveforms using the ghost reconstructed alternating current estimation (GRACE) magnetic resonance imaging technique. Magn. Reson. Med. 50(3), 633–637 (2003)

    Article  Google Scholar 

  53. Youngdee, W., Planinsic, G., Lurie, D.J.: Optimization of field-cycled PEDRI for in-vivo imaging of free radicals. Physics in Med. Bio. 46(1), 2531–2544 (2001)

    Article  Google Scholar 

  54. Zierhut, M.L., Yen, Y.F., Chen, A.P., Bok, R., Albers, M.J., Zhang, V., Tropp, J., Park, I., Vigneron, D.B., Kurhanewicz, J., Hurd, R.E., Nelson, S.J.: Kinetic modeling of hyperpolarized 13C1-pyruvate metabolism in normal rats and TRAMP mice. J. Magn. Reson. 202(1), 85–92 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martyn Paley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paley, M. et al. (2015). Advanced fMRI and the Brain Computer Interface. In: Hassanien, A., Azar, A. (eds) Brain-Computer Interfaces. Intelligent Systems Reference Library, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-319-10978-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10978-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10977-0

  • Online ISBN: 978-3-319-10978-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics