Abstract
Bio-inspired computation is a field of study that connects together numerous subfields of connectionism (neural network), social behavior, emergence field of artificial intelligence and machine learning algorithms for complex problem optimization. Bio-inspired computation is motivated by nature and over the last few years, it has encouraged numerous advance algorithms and set of computational tools for dealing with complex combinatorial optimization problems. Black Hole is a new bio-inspired metaheuristic approach based on observable fact of black hole phenomena. It is a population based algorithmic approach like genetic algorithm (GAs), ant colony optimization (ACO) algorithm, particle swarm optimization (PSO), firefly and other bio-inspired computation algorithms. The objective of this book chapter is to provide a comprehensive study of black hole approach and its applications in different research fields like data clustering problem, image processing, data mining, computer vision, science and engineering. This chapter provides with the stepping stone for future researches to unveil how metaheuristic and bio-inspired commutating algorithms can improve the solutions of hard or complex problem of optimization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Tan, X., Bhanu, B.: Fingerprint matching by genetic algorithms. Pattern Recogn. 39, 465–477 (2006)
Karakuzu, C.: Fuzzy controller training using particle swarm optimization for nonlinear system control. ISA Trans. 47(2), 229–239 (2008)
Rajabioun, R.: Cuckoo optimization algorithm. Elsevier Appl. Soft Comput. 11, 5508–5518 (2011)
Tsai Hsing, C., Lin, Yong-H: Modification of the fish swarm algorithm with particle swarm optimization formulation and communication behavior. Appl. Soft Comput. Elsevier 1, 5367–5374 (2011)
Baojiang, Z., Shiyong, L.: Ant colony optimization algorithm and its application to neu ro-fuzzy controller design. J. Syst. Eng. Electron. 18, 603–610 (2007)
Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B 26(1), 29–41 (1996)
Farmer, J.D., et al.: The immune system, adaptation and machine learning. Phys. D Nonlinear Phenom. Elsevier 22(1–3), 187–204 (1986)
Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf. Sci. 177, 3918–3937 (2007)
Kirkpatrick, S., Gelatto, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Tang, K.S., Man, K.F., Kwong, S., He, Q.: Genetic algorithms and their applications. IEEE Sig. Process. Mag. 3(6), 22–37 (1996)
Du, Weilin, Li, B.: Multi-strategy ensemble particle swarm optimization for dynamic optimization. Inf. Sci. 178, 3096–3109 (2008)
Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3, 82–102 (1999)
Liu, Y., Yi, Z., Wu, H., Ye, M., Chen, K.: A tabu search approach for the minimum sum-of-squares clustering problem. Inf. Sci. 178(12), 2680–2704 (2008)
Kim, T.H., Maruta, I., Sugie, T.: Robust PID controller tuning based on the constrained particle swarm optimization. J. Autom. Sciencedirect 44(4), 1104–1110 (2008)
Cordon, O., Santamarı, S., Damas, J.: A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm. Pattern Recogn. Lett. 27, 1191–1200 (2006)
Yang, X.S.: Firefly algorithms for multimodal optimization, In: Proceeding of Stochastic Algorithms: Foundations and Applications (SAGA), 2009 (2009)
Kalinlia, A., Karabogab, N.: Artificial immune algorithm for IIR filter design. Eng. Appl. Artif. Intell. 18, 919–929 (2005)
Lin, Y.L., Chang, W.D., Hsieh, J.G.: A particle swarm optimization approach to nonlinear rational filter modeling. Expert Syst. Appl. 34, 1194–1199 (2008)
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)
Jackson, D.E., Ratnieks, F.L.W.: Communication in ants. Curr. Biol. 16, R570–R574 (2006)
Goss, S., Aron, S., Deneubourg, J.L., Pasteels, J.M.: Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579–581 (1989)
Kennedy, J., Eberhart, R.C.: Particle swarm optimization. Proc. IEEE Int. Conf. Neural Networks 4, 1942–1948 (1995)
Yang, X. S.: 2010, ‘Nature-inspired metaheuristic algorithms’, Luniver Press
Tarasewich, p, McMullen, P.R.: Swarm intelligence: power in numbers. Commun. ACM 45, 62–67 (2002)
Senthilnath, J., Omkar, S.N., Mani, V.: Clustering using firefly algorithm: performance study. Swarm Evol. Comput. 1(3), 164–171 (2011)
Yang, X.S.: Firefly algorithm. Engineering Optimization, pp. 221–230 (2010)
Yang, X.S.: Bat algorithm for multi-objective optimization. Int. J. Bio-inspired Comput. 3(5), 267–274 (2011)
Tripathi, P.K., Bandyopadhyay, S., Pal, S.K.: Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients. Inf. Sci. 177, 5033–5049 (2007)
Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical Report TR06, Erciyes University (2005)
Ellabib, I., Calamari, P., Basir, O.: Exchange strategies for multiple ant colony system. Inf. Sci. 177, 1248–1264 (2007)
Hamzaçebi, C.: Improving genetic algorithms performance by local search for continuous function optimization. Appl. Math. Comput. 96(1), 309–317 (2008)
Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178, 4421–4433 (2008)
Lazar, A.: Heuristic knowledge discovery for archaeological data using genetic algorithms and rough sets, Heuristic and Optimization for Knowledge Discovery, IGI Global, pp. 263–278 (2014)
Russell, S.J., Norvig, P.: Artificial Intelligence a Modern Approach. Prentice Hall, Upper Saddle River (2010). 1132
Fred, W.: Glover, Manuel Laguna, Tabu Search, 1997, ISBN: 079239965X
Christian, B., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Comput. Surveys (CSUR) 35(3), 268–308 (2003)
Gazi, V., Passino, K.M.: Stability analysis of social foraging swarms. IEEE Trans. Syst. Man Cybern. Part B 34(1), 539–557 (2008)
Deb, K.: Optimization for Engineering Design: Algorithms and Examples, Computer-Aided Design. PHI Learning Pvt. Ltd., New Delhi (2009)
Rashedi, E.: Gravitational Search Algorithm. M.Sc. Thesis, Shahid Bahonar University of Kerman, Kerman (2007)
Shah-Hosseini, H.: The intelligent water drops algorithm: a nature-inspired swarm-based optimization algorithm. Int. J. Bio-inspired Comput. 1(1), 71–79 (2009)
Dos Santos, C.L., et al.: A multiobjective firefly approach using beta probability. IEE Trans. Magn. 49(5), 2085–2088 (2013)
Talbi, E.G.: Metaheuristics: from design to implementation, vol. 74, p. 500. Wiley, London (2009)
Giacconi, R., Kaper, L., Heuvel, E., Woudt, P.: Black hole research past and future. In: Black Holes in Binaries and Galactic Nuclei: Diagnostics. Demography and Formation, pp. 3–15. Springer, Berlin, Heidelberg (2001)
Pickover, C.: Black Holes: A Traveler’s Guide. Wiley, London (1998)
Frolov, V.P., Novikov, I.D.: Phys. Rev. D. 42, 1057 (1990)
Schutz, B. F.: Gravity from the Ground Up. Cambridge University Press, Cambridge. ISBN 0-521-45506-5 (2003)
Davies, P.C.W.: Thermodynamics of Black Holes. Reports on Progress in Physics, Rep. Prog. Phys. vol. 41 Printed in Great Britain (1978)
Heusler, M.: Stationary black holes: uniqueness and beyond. Living Rev. Relativity 1(1998), 6 (1998)
Nemati, M., Momeni, H., Bazrkar, N.: Binary black holes algorithm. Int. J. Comput. Appl. 79(6), 36–42 (2013)
Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)
Akay, B., Karaboga, D.: A modified artificial bee colony algorithm for real-parameter optimization. Inf. Sci. 192, 120–142 (2012)
El-Abd, M.: Performance assessment of foraging algorithms vs. evolutionary algorithms. Inf. Sci. 182, 243–263 (2012)
Ghosh, S., Das, S., Roy, S., Islam, M.S.K., Suganthan, P.N.: A differential covariance matrix adaptation evolutionary algorithm for real parameter optimization. Inf. Sci. 182, 199–219 (2012)
Fox, B., Xiang, W., Lee, H.: Industrial applications of the ant colony optimization algorithm. Int. J. Adv. Manuf. Technol. 31, 805–814 (2007)
Geem, Z., Cisty, M.: Application of the harmony search optimization in irrigation. Recent Advances in Harmony Search Algorithm’, pp. 123–134. Springer, Berlin (2010)
Selim, S.Z., Ismail, M.A.: K-means-type algorithms: a generalized convergence theorem and characterization of local optimality pattern analysis and machine intelligence. IEEE Trans. PAMI 6, 81–87 (1984)
Wang, J., Peng, H., Shi, P.: An optimal image watermarking approach based on a multi-objective genetic algorithm. Inf. Sci. 181, 5501–5514 (2011)
Picard, D., Revel, A., Cord, M.: An application of swarm intelligence to distributed image retrieval. Inf. Sci. 192, 71–81 (2012)
Chaturvedi, D.: Applications of genetic algorithms to load forecasting problem. Springer, Berlin, pp. 383–402 (2008) (Journal of Soft Computing)
Christmas, J., Keedwell, E., Frayling, T.M., Perry, J.R.B.: Ant colony optimization to identify genetic variant association with type 2 diabetes. Inf. Sci. 181, 1609–1622 (2011)
Guo, Y.W., Li, W.D., Mileham, A.R., Owen, G.W.: Applications of particle swarm optimization in integrated process planning and scheduling. Robot. Comput.-Integr. Manuf. Elsevier 25(2), 280–288 (2009)
Rana, S., Jasola, S., Kumar, R.: A review on particle swarm optimization algorithms and their applications to data clustering. Artif. Intell. Rev. 35, 211–222 (2011)
Yeh, W.C.: Novel swarm optimization for mining classification rules on thyroid gland data. Inf. Sci. 197, 65–76 (2012)
Zhang, Y., Gong, D.W., Ding, Z.: A bare-bones multi-objective particle swarm optimization algorithm for environmental/economic dispatch. Inf. Sci. 192, 213–227 (2012)
Marinakis, Y., Marinaki, M., Dounias, G.: Honey bees mating optimization algorithm for the Euclidean traveling salesman problem. Inf. Sci. 181, 4684–4698 (2011)
Anderberg, M.R.: Cluster analysis for application. Academic Press, New York (1973)
Hartigan, J.A.: Clustering Algorithms. Wiley, New York (1975)
Valizadegan, H., Jin, R., Jain, A.K.: Semi-supervised boosting for multi-class classification. 19th European Conference on Machine Learning (ECM), pp. 15–19 (2008)
Chris, D., Xiaofeng, He: Cluster merging and splitting in hierarchical clustering algorithms. Proc. IEEE ICDM 2002, 1–8 (2002)
Leung, Y., Zhang, J., Xu, Z.: Clustering by scale-space filtering. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1396–1410 (2000)
Révész, P.: On a problem of Steinhaus. Acta Math. Acad. Scientiarum Hung. 16(3–4), 311–331 (1965)
Niknam, T., et al.: An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering. J. Zhejiang Univ. Sci. A 10(4), 512–519 (2009)
Niknam, T., Amiri, B.: An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis. Appl. Soft Comput. 10(1), 183–197 (2011)
Ding, C., He, X.: K-means clustering via principal component analysis. Proceedings of the 21th international conference on Machine learning, pp. 29 (2004)
Uddin, M.F., Youssef, A.M.: Cryptanalysis of simple substitution ciphers using particle swarm optimization. IEEE Congress on Evolutionary Computation, pp. 677–680 (2006)
Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)
Danziger, M., Amaral Henriques, M.A.: Computational intelligence applied on cryptology: a brief review. Latin America Transactions IEEE (Revista IEEE America Latina) 10(3), 1798–1810 (2012)
Chee, Y., Xu, D.: Chaotic encryption using discrete-time synchronous chaos. Phys. Lett. A 348(3–6), 284–292 (2006)
Hussein, R.M., Ahmed, H.S., El-Wahed, W.: New encryption schema based on swarm intelligence chaotic map. Proceedings of 7th International Conference on Informatics and Systems (INFOS), pp. 1–7 (2010)
Chen, G., Mao, Y.: A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos Solutions Fractals 21, 749–761 (2004)
Hongbo, Liu: Chaotic dynamic characteristics in swarm intelligence. Appl. Soft Comput. 7, 1019–1026 (2007)
Azizipanah-Abarghooeea, R., et al.: Short-term scheduling of thermal power systems using hybrid gradient based modified teaching–learning optimizer with black hole algorithm. Electric Power Syst. Res. Elsevier 108, 16–34 (2014)
Bard, J.F.: Short-term scheduling of thermal-electric generators using Lagrangian relaxation. Oper. Res. 36(5), 756–766 (1988)
Yu, I.K., Song, Y.H.: A novel short-term generation scheduling technique of thermal units using ant colony search algorithms. Int. J. Electr. Power Energy Syst. 23, 471–479 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kumar, S., Datta, D., Singh, S.K. (2015). Black Hole Algorithm and Its Applications. In: Azar, A., Vaidyanathan, S. (eds) Computational Intelligence Applications in Modeling and Control. Studies in Computational Intelligence, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-11017-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-11017-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11016-5
Online ISBN: 978-3-319-11017-2
eBook Packages: EngineeringEngineering (R0)