Skip to main content

Genetic Algorithm Based Multiobjective Bilevel Programming for Optimal Real and Reactive Power Dispatch Under Uncertainty

  • Chapter
  • First Online:
Computational Intelligence Applications in Modeling and Control

Part of the book series: Studies in Computational Intelligence ((SCI,volume 575))

Abstract

This chapter presents how multiobjective bilevel programming (MOBLP) in a hierarchical structure can be efficiently used for modeling and solving optimal power generation and dispatch problems via genetic algorithm (GA) based Fuzzy Goal Programming (FGP) method in a power system operation and planning horizon. In MOBLP formulation of the proposed problem, first the objectives of real and reactive power (P-Q) optimization are considered as two optimization problems at two individual levels (top level and bottom level) with the control of more than one objective at each level. Then the hierarchically ordered problem is fuzzily described to accommodate the impression in P-Q optimization simultaneously in the decision making context. In the model formulation, the concept of membership functions in fuzzy sets for measuring the achievement of highest membership value (unity) of the defined fuzzy goals to the extent possible by minimising their under-deviational variables on the basis of their weights of importance is considered. The aspects of FGP are used to incorporate the various uncertainties in power generation and dispatch. In the solution process, the GA is used in the framework of FGP model in an iterative manner to reach a satisfactory decision on the basis of needs and desires of the decision making environment. The GA scheme is employed at two different stages. At the first stage, individual optimal decisions of the objectives are determined for fuzzy goal description of them. At the second stage, evaluation of goal achievement function for minimization of the weighted under-deviational variables of the membership goals associated with the defined fuzzy goals is considered for achieving the highest membership value (unity) of the defined fuzzy goals on the basis of hierarchical order of optimizing them in the decision situation. The proposed approach is tested on the standard IEEE 6-Generator 30-Bus System to illustrate the potential use of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abido, M.A.: A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electr. Power Syst. Res. 65(1), 71–81 (2003)

    Article  Google Scholar 

  2. Abido, M.A.: Multiobjective evolutionary algorithms for electric power dispatch problem. IEEE Trans. Evol. Comput. 10(3), 315–329 (2006)

    Article  Google Scholar 

  3. Abou El Ela, A.A., Abido, M.A., Spea, S.R.: Differential evolution algorithm for optimal reactive power dispatch. Electr. Power Syst. Res. 81, 458–468 (2011)

    Article  Google Scholar 

  4. AlRashidi, M.R., El-Hawary, M.E.: Pareto fronts of the emission-economic dispatch under different loading conditions. Int. J. Electr. Electron. Eng. 2(10), 596–599 (2008)

    Google Scholar 

  5. Azar, A.T.: Fuzzy Systems. IN-TECH, Vienna (2010). ISBN 978-953-7619-92-3

    Google Scholar 

  6. Azar, A.T.: Overview of type-2 fuzzy logic systems. Int. J. Fuzzy Syst. Appl. 2(4), 1–28 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bansilal, A., Thukaram, D., Parthasarathy, K.: Optimal reactive power dispatch algorithm for voltage stability improvement. Int. J. Electr. Power Energy Syst. 18(7), 461–468 (1996)

    Article  Google Scholar 

  8. Basu, M.: An interactive fuzzy satisfying-based simulated annealing technique for economic emission load dispatch with nonsmooth fuel cost and emission level functions. Electr. Power Compon. Syst. 32(2), 163–173 (2004)

    Article  Google Scholar 

  9. Basu, M.: Dynamic economic emission dispatch using nondominated sorting genetic algorithm-II. Int. J. Electr. Power Energy Syst. 30(2), 140–149 (2008)

    Article  Google Scholar 

  10. Burton, R.M.: The multilevel approach to organizational issues of the firm—a critical review. Omega 5(4), 395–414 (1977)

    Article  Google Scholar 

  11. Cadogan, J.B., Eisenberg, L.: Sulfur oxide emissions management for electric power systems. IEEE Trans. Power Appar. Syst. 96(2), 393–401 (1977)

    Article  Google Scholar 

  12. Candler, W., Townsley, R.: A linear two level programming problem. Comput. Oper. Res. 9(1), 59–76 (1982)

    Article  MathSciNet  Google Scholar 

  13. Chen, P.H., Chang, H.C.: Large-scale economic dispatch by genetic algorithm. IEEE Trans. Power Syst. 10(4), 1919–1926 (1995)

    Article  MathSciNet  Google Scholar 

  14. Chowdhury, B.H., Rahman, S.: A review of recent advances in economic dispatch. IEEE Trans. Power Syst. 5(4), 1248–1259 (1990)

    Article  Google Scholar 

  15. Das, B., Patvardhan, C.: A new hybrid evolutionary strategy for reactive power dispatch. Electr. Power Res. 65, 83–90 (2003)

    Article  Google Scholar 

  16. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, US (2002)

    Google Scholar 

  17. Deeb, N., Shahidehpour, S.M.: Linear reactive power optimization in a large power network using the decomposition approach. IEEE Trans. Power Syst. 5(2), 428–438 (1990)

    Article  Google Scholar 

  18. Dhillon, J.S., Parti, S.C., Kothari, D.P.: Stochastic economic emission load dispatch. Electr. Power Syst. Res. 26(3), 179–186 (1993)

    Article  Google Scholar 

  19. Dommel, H.W., Tinney, W.F.: Optimal power flow solutions. IEEE Trans. Power Appar. Syst. 87(10), 1866–1876 (1968)

    Article  Google Scholar 

  20. El-Keib, A.A., Ma, H., Hart, J.L.: Economic dispatch in view of the clean air act of 1990. IEEE Trans. Power Syst. 9(2), 972–978 (1994)

    Article  Google Scholar 

  21. Farag, A., Al-Baiyat, S., Cheng, T.C.: Economic load dispatch multiobjective optimization procedures using linear programming techniques. IEEE Trans. Power Syst. 10(2), 731–738 (1995)

    Article  Google Scholar 

  22. Fernandes, R.A., Lange, F., Burchett, R.C., Happ, H.H., Wirgau, K.A.: Large scale reactive power planning. IEEE Trans Power Apparatus Syst. 102(5), 1083–1088 (1983)

    Article  Google Scholar 

  23. Gen, M., Ida, K., Lee, J., Kim, J.: Fuzzy nonlinear goal programming using genetic algorithm. Comput. Ind. Eng. 33(1–2), 39–42 (1997)

    Article  Google Scholar 

  24. Gent, M.R., Lament, JWm: Minimum-emission dispatch. IEEE Trans. Power Appar. Syst. 90(6), 2650–2660 (1971)

    Article  Google Scholar 

  25. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  26. Gong, D., Zhang, Y., Qi, C.: Environmental/economic power dispatch using a hybrid multi-objective optimization algorithm. Electr. Power Energy Syst. 32, 607–614 (2010)

    Article  Google Scholar 

  27. Granville, S.: Optimal reactive power dispatch through interior point methods. IEEE Trans. Power Syst. 9(1), 98–105 (1994)

    Article  Google Scholar 

  28. Happ, H.H.: Optimal power dispatch—a comprehensive survey. IEEE Trans. Power Appar. Syst. 96(3), 841–854 (1977)

    Article  Google Scholar 

  29. Hejazi, S.R., Memariani, A., Jahanshahloo, G., Sepehri, M.M.: Linear bilevel programming solution by genetic algorithm. Comput. Oper. Res. 2(29), 1913–1925 (2002)

    Article  MathSciNet  Google Scholar 

  30. Hobbs, B.F.: Emission dispatch under the underutilization provision of the 1990 U.S. Clean air act amendments: models and analysis. IEEE Trans. Power Syst. 8(1), 177–183 (1993)

    Article  Google Scholar 

  31. Holland, J.H.: Genetic algorithms and optimal allocation of trials. SIAM J. Comput. 2, 88–105 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  32. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI (1975)

    Google Scholar 

  33. Huang, C.M., Yang, H.T., Huang, C.L.: Bi-objective power dispatch using fuzzy satisfaction-maximizing decision approach. IEEE Trans. Power Syst. 12(4), 1715–1721 (1997)

    Article  Google Scholar 

  34. Iba, K.: Reactive power optimization by genetic algorithms. IEEE Trans. Power Syst. 9(2), 685–692 (1994)

    Article  Google Scholar 

  35. Ignizio, J.P.: Goal Programming and Extensions. D. C Health, Lexington (1976)

    Google Scholar 

  36. Jizhong, Z.: Optimization of Power System Operation. Wiley, Hoboken (2009)

    Google Scholar 

  37. Lai, Y.J.: Hierarchical optimization: a satisfactory solution. Fuzzy Sets Syst. 77(3), 321–335 (1996)

    Article  MATH  Google Scholar 

  38. Jolissaint, C.H., Arvanitidis, N.V., Luenberger, D.G.: Decomposition of real and reactive power flows: a method suited for on-line applications. IEEE Trans. Power Appar. Syst. 91(2), 661–670 (1972)

    Article  Google Scholar 

  39. Lee, K.Y., Park, Y.M., Ortiz, J.L.: A united approach to optimal real and reactive power dispatch. IEEE Trans Power Apparatus Syst. 104(5), 1147–1153 (1985)

    Article  Google Scholar 

  40. Lee, K.Y., Yang, F.F.: Optimal reactive power planning using evolutionary programming: a comparative study for evolutionary programming, evolutionary strategy, genetic algorithm and linear programming. IEEE Trans. Power Syst. 13(1), 101–108 (1998)

    Article  Google Scholar 

  41. Mangoli, M.K., Lee, K.Y.: Optimal real and reactive power control using linear programming. Electr. Power Syst. Res. 26, 1–10 (1993)

    Article  Google Scholar 

  42. Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14(1), 105–111 (1999)

    Article  Google Scholar 

  43. Mathieu, R., Pittard, L., Anandalingam, G.: Genetic algorithm based approach to bilevel linear programming. Oper. Res. 28(1), 1–21 (1994)

    MATH  MathSciNet  Google Scholar 

  44. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs’, 3rd edn. Spriger, Berlin (1996)

    Google Scholar 

  45. Nanda, J., Kothari, D.P., Lingamurthy, K.S.: Economic-emission load dispatch through goal programming techniques. IEEE Trans. Energy Convers. 3(1), 26–32 (1988)

    Article  Google Scholar 

  46. Nishizaki, I., Sakawa, M.: Computational methods through genetic algorithms for obtaining Stackelberg solutions to two-level mixed zero-one programming problems. Cybernetics and Systems 31(2), 203–221 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  47. Pal, B.B., Moitra, B.N.: A goal programming procedure for solving problems with multiple fuzzy goals using dynamic programming. Eur. J. Oper. Res. 144(3), 480–491 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  48. Pal, B.B., Moitra, B.N., Maulik, U.: A goal programming procedure for fuzzy multiobjective linear fractional programming problem. Fuzzy Sets Syst. 139(2), 395–405 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  49. Pal, B.B., Chakraborti, D.: Using genetic algorithm for solving quadratic bilevel programming problems via fuzzy goal programming. Int. J. Appl. Manage. Sci. 5(2), 172–195 (2013)

    Article  Google Scholar 

  50. Peschon, J., Piercy, D.S., Tinney, W.F., Tveit, O.J., Cuenod, M.: Optimum control of reactive power flow. IEEE Trans. Power Appar. Syst. 87(1), 40–48 (1968)

    Article  Google Scholar 

  51. Quintana, V.H., Santos-Nieto, M.: Reactive-power dispatch by successive quadratic programming. IEEE Trans. Energy Convers. 4(3), 425–435 (1989)

    Article  Google Scholar 

  52. Romero, C.: Handbook of Critical Issues in Goal Programming. Pergamon Press, Oxford (1991)

    MATH  Google Scholar 

  53. Sachdeva, S.S., Billinton, R.: Optimum network VAR planning by nonlinear programming. IEEE Trans. Power Apparatus Syst. 92, 1217–1225 (1973)

    Article  Google Scholar 

  54. Sakawa, M.: Genetic Algorithms and Fuzzy Multiobjective Optimization. Kluwer Academic Publishers, Boston (2001)

    Google Scholar 

  55. Sakawa, M., Nishizaki, I.: Interactive fuzzy programming for decentralized two-level linear programming problems. Fuzzy Sets Syst. 125(3), 301–315 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  56. Sakawa, M., Nishizaki, I.: Interactive fuzzy programming for two-level Nonconvex programming problems with fuzzy parameters through genetic algorithms. Fuzzy Sets Syst. 127(2), 185–197 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  57. Shih, H.S., Lee, S.: Compensatory fuzzy multiple level decision making. Fuzzy Sets Syst. 114(1), 71–87 (2000)

    Article  MATH  Google Scholar 

  58. Simon, H.A.: Administrative Behavior. Fress Press, New York (1957)

    Google Scholar 

  59. Sonmez, Y.: Multi-objective environmental/economic dispatch solution with penalty factor using artificial bee colony algorithm. Sci. Res. Essays 6(13), 2824–2831 (2011)

    Google Scholar 

  60. Srinivasan, D., Tettamanzi, A.G.B.: An evolutionary algorithm for evaluation of emission compliance options in view of the clean air act amendments. IEEE Trans. Power Syst. 12(1), 336–341 (1997)

    Article  Google Scholar 

  61. Sullivan, R.L., Hackett, D.F.: Air quality control using a minimum pollution-dispatching algorithm. Environ. Sci. Technol. 7(11), 1019–1022 (1973)

    Article  Google Scholar 

  62. Talaq, J.H., El-Hawary, F., El-Hawary, M.E.: A summary of environmental/ economic dispatch algorithms. IEEE Trans. Power Syst. 9(3), 1508–1516 (1994)

    Article  Google Scholar 

  63. Tsuji, A.: Optimal fuel mix and load dispatching under environmental constraints. IEEE Trans. Power Appar. Syst. PAS 100(5), 2357–2364 (1981)

    Article  MathSciNet  Google Scholar 

  64. Vanitha, M., Thanushkodi, K.: An efficient technique for solving the economic dispatch problem using biogeography algorithm. Eur. J. Sci. Res. 5(2), 165–172 (2011)

    Google Scholar 

  65. Vlachogiannis, J.G., Lee, K.Y.: Quantum-inspired evolutionary algorithm for real and reactive power dispatch. IEEE Trans. Power Syst. 23(4), 1627–1636 (2008)

    Article  Google Scholar 

  66. Wang, L.F., Singh, C.: Environmental/economic power dispatch using a fuzzified multi-objective particle swarm optimization algorithm. Electr. Power Syst. Res. 77(12), 1654–1664 (2007)

    Article  Google Scholar 

  67. Wu, Q.H., Ma, J.T.: Power system optimal reactive power dispatch using evolutionary programming. IEEE Trans. Power Syst. 10(3), 1243–1249 (1995)

    Article  MathSciNet  Google Scholar 

  68. Yokoyama, R., Bae, S.H., Morita, T., Sasaki, H.: Multiobjective optimal generation dispatch based on probability security criteria. IEEE Trans. Power Syst. 3(1), 317–324 (1988)

    Article  Google Scholar 

  69. Zadeh, L.A.: Fuzzy Sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  70. Zahavi, J., Eisenberg, L.: Economic-environmental power dispatch. IEEE Trans. Syst. Man Cybern. SMC 5(5), 485–489 (1975)

    Article  MATH  Google Scholar 

  71. Zhang, G., Zhang, G., Gao, Y., Lu, J.: Competitive strategic bidding optimization in electricity markets using bilevel programming and swarm technique. IEEE Trans. Industr. Electron. 58(6), 2138–2146 (2011)

    Article  Google Scholar 

  72. Zheng, D.W., Gen, M., Ida, K.: Evolution program for nonlinear goal programming. Comput. Ind. Eng. 31(3/4), 907–911 (1996)

    Article  Google Scholar 

  73. Zimmermann, H.-J.: Fuzzy Sets Decision Making and Expert Systems. Kluwer Academic Publisher, Boston (1987)

    Book  Google Scholar 

  74. Zimmermann, H.-J.: Fuzzy Set Theory and Its Applications, 2nd Revised edn. Kluwer Academic Publishers, Boston (1991)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Papun Biswas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Biswas, P. (2015). Genetic Algorithm Based Multiobjective Bilevel Programming for Optimal Real and Reactive Power Dispatch Under Uncertainty. In: Azar, A., Vaidyanathan, S. (eds) Computational Intelligence Applications in Modeling and Control. Studies in Computational Intelligence, vol 575. Springer, Cham. https://doi.org/10.1007/978-3-319-11017-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11017-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11016-5

  • Online ISBN: 978-3-319-11017-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics