Skip to main content

Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a Major Urban Area: The Case of Athens

  • Conference paper
Engineering Applications of Neural Networks (EANN 2014)

Abstract

All over the globe, major urban centers face a significant air pollution problem, which is becoming worse every year. This research effort aims to contribute towards real time monitoring of air quality, which is a target of great importance for people’s health. However, a serious obstacle is the high percentage of erroneous or missing data which is highly prolonged in many of the cases. To overcome this problem and due to the individuality of each residential area of Athens, separate local ANN had to be developed, capable of performing reliable interpolation of missing data vectors on an hourly basis. Also due to the need for hourly overall estimations of pollutants in the wider area of a major city, ANN ensembles were additionally developed by employing four existing methods and an innovative fuzzy inference approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baidyk, T., Kussul, E.: Ensemble Neural Networks. Optical Memory and Neural Networks 18(4), 295–303 (2009)

    Article  Google Scholar 

  2. Chaloulakou, A., Kassomenos, P., Spyrellis, N., Demokritou, P., Koutrakis, P.: Measurements of PM10 and PM2.5 particle concentrations in Athens. Greece Atmospheric Environment 37(2003), 649–660 (2012)

    Google Scholar 

  3. Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., Brasseur, O.: A neural network forecast for daily average PM10 concentrations in Belgium. Atmospheric Environment (January 2005)

    Google Scholar 

  4. Iliadis, L.: Intelligent Information Systems and Applications in Risk Estimation. Hrodotos Publications (2007)

    Google Scholar 

  5. Inal, F.: Artificial Neural Network Prediction of Tropospheric Ozone Concentrations in Istanbul, Turkey. CLEAN – Soil, Air, Water 38(10), 897–908 (2010)

    Article  MathSciNet  Google Scholar 

  6. Jimenez, D.: Dynamically weighted ensemble neural networks for classification (1998)

    Google Scholar 

  7. The 1998 IEEE International Joint Conference (Volume: 1)

    Google Scholar 

  8. Kadri, C., Tian, F., Zhang, L., Dang, L., Li, G.: Neural Network Ensembles for Online Gas Concentration Estimation Using an Electronic Nose. International Journal of Computer Science Issues 10(2(1)) (March 2013)

    Google Scholar 

  9. Lopez, M., Melin, P., Castillo, O.: A method for creating Ensemble Neural Networks using a Sampling Data Approach. In: Thero. Advances and Applications of Fuzzy Logic. ASC, vol. 42, pp. 772–780. Springer (2007)

    Google Scholar 

  10. Maclin, R., Opitz, D.: Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research 11, 169–198 (1999)

    MATH  Google Scholar 

  11. Mammone, R.J.: Artificial Neural Networks for Speech and Vision, pp. 126–142. Chapman & Hall, London (1993)

    Google Scholar 

  12. Marougianni, G.: Forecasting tropospheric ozone levels from meteorological variables: Athens urban area as a case study. Postgraduate thesis. AUTH, Greece (2010)

    Google Scholar 

  13. Ministry of Environment, Energy & Climate Change, Air Quality, Reports, Air Pollution 2009 Annual Report (2010)

    Google Scholar 

  14. Ozcan, H.K., Bilgili, E., Sahin, U., Bayat, C.: Modeling of trophospheric ozone concentrations using genetically trained multi-level cellular neural networks. Advances in Atmospheric Sciences 24(5), 907–914 (2007)

    Article  Google Scholar 

  15. Ozdemir, H., Demir, G., Altay, G., Albayrak, S., Bayat, C.: Environmental Engineering Science 25(9), 1249–1254 (2008)

    Google Scholar 

  16. Ordieres Meré, J.B., Vergara González, E.P., Capuz, R.S., Salaza, R.E.: Neural network prediction model for fine particulate matter (PM). Environmental Modelling and Software 20, 547–559 (2005)

    Article  Google Scholar 

  17. Paoli, C.: A Neural Network model forecasting for prediction of hourly ozone concentration in Corsica. In: Proceedings IEEE of the 10th International Conference on Environment and Electrical Engineering, EEEIC (2011)

    Google Scholar 

  18. Papaleonidas, A., Iliadis, L.: Employing ANN That Estimate Ozone in a Short-Term Scale When Monitoring Stations Malfunction. In: Jayne, C., Yue, S., Iliadis, L. (eds.) EANN 2012. CCIS, vol. 311, pp. 71–80. Springer, Heidelberg (2012a)

    Chapter  Google Scholar 

  19. Papaleonidas, A., Iliadis, L.: Hybrid and Reinforcement Multi Agent Technology for real time air pollution monitoring. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) Artificial Intelligence Applications and Innovations. IFIP AICT, vol. 381, pp. 274–284. Springer, Heidelberg (2012b)

    Chapter  Google Scholar 

  20. Papaleonidas, A., Iliadis, L.: Neurocomputing techniques to dynamically forecast spatiotemporal air pollution data. Evolving Systems 4, 221–233 (2013), doi:10.1007/s12530-013-9078-5

    Article  Google Scholar 

  21. Paschalidou, A., Iliadis, L., Kassomenos, P., Bezirtzoglou, C.: Neural Modeling of the Tropospheric Ozone concentrations in an Urban Site. In: Proceedings of the 10th International Conference Engineering Applications of Neural Networks, pp. 436–445 (2007)

    Google Scholar 

  22. Roy, S.: Prediction of Particulate Matter Concentrations Using Artificial Neural Network. Resources and Environment 2(2), 30–36 (2012), doi:10.5923/j.re.20120202.05

    Article  Google Scholar 

  23. Díaz-Robles, L.A., Ortega, J.C., Fu, J.S., Reed, G.D., Chow, J.C., Watson, J.G., Moncada-Herrera, J.A.: A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: The case of Temuco, Chile 42(35), 8331–8340 (2008)

    Google Scholar 

  24. Sfetsos, A., Vlachogiannis, D.: A new approach to discovering the causal relationship between meteorological patterns and PM10 exceedances. Atmospheric Research 98(2), 500–511 (2013)

    Google Scholar 

  25. Slini, T., Karatzas, K., Moussiopoulos, N.: Correlation of air Pollution and Meteorological data Networks. In: 8th Int. Conf. on Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes (2002)

    Google Scholar 

  26. Wahab, A.-S.A., Al-Alawi, S.M.: Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modeling & Software 17, 219–228 (2002)

    Article  Google Scholar 

  27. Wolpert, D.: Stacked Generalization. Neural Networks 5, 241–259 (1992)

    Article  Google Scholar 

  28. Zhou, Z.H., Wu, J., Wei, T.: Corrigendum to “Ensembling neural networks: Many could be better than all”. Artificial Intelligence 174(18), 15–70 (2010)

    Article  Google Scholar 

  29. Gardner, M.W., Dorling, S.R.: Artificial Neural Networks (The Multilayer Perceptron) - a Review of Applications in the Atmospheric Sciences. Atmospheric Environment 32(14/15), 2627–2636 (1998)

    Article  Google Scholar 

  30. Kolehmainen, M., Martikainen, H., Ruuskanen, J.: Neural networks and periodic components used in air quality forecasting. Atmospheric Environment 35(5), 815–825 (2001)

    Article  Google Scholar 

  31. http://www.epa.gov/pm/

  32. http://www.ypeka.gr/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bougoudis, I., Iliadis, L., Papaleonidas, A. (2014). Fuzzy Inference ANN Ensembles for Air Pollutants Modeling in a Major Urban Area: The Case of Athens. In: Mladenov, V., Jayne, C., Iliadis, L. (eds) Engineering Applications of Neural Networks. EANN 2014. Communications in Computer and Information Science, vol 459. Springer, Cham. https://doi.org/10.1007/978-3-319-11071-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11071-4_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11070-7

  • Online ISBN: 978-3-319-11071-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics