Abstract
This paper study temporal curve patterns associated with BBS information and how the information’s popularity grows and fades over time. We develop the Temporal-Peak clustering algorithm that accurately finds the curve pattern in BBS. According to the characteristics of BBS platform and applying sudden and durative describes temporal variation curve of information. The article demonstrates our approach on a massive dataset. The algorithm effectively avoids interference of random in the temporal node. Temporal-Peak accurately and succinctly finds temporal curve patterns in BBS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aperjis, C., Huberman, B.A., Wu, F.: Harvesting collective intelligence: Temporal behavior in yahoo answers. ArXiv e-prints (January 2010)
Rogers, E.M.: Diffusion of innovations, 5th edn. Free Press (2003)
Budak, C., Agrawal, D.: Amr El Abbadi. Diffusion of Information in Social Networks: Is It All Local? Data Mining, 121–130 (2012)
Yardi, S., Golder, S.A., Brzozowski, M.J.: Blogging at work and the corporate attention economy. In: CHI 2009 (2009)
Wu, F., Huberman, B.A.: Novelty and collective attention. PNAS 104(45), 17599–17601 (2007)
Szabo, G., Huberman, B.A.: Predicting the popularity of online content. ArXiv e-prints (November 2008)
Crane, R., Sornette, D.: Robust dynamic classes revealed by measuring the response function of a social system. In: PNAS (2008)
Barabási, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435, 207 (2005)
Matsubara, Y., Sakurai, Y., Aditya Prakash, B.: Rise and Fall Patterns of Information Diffusion:Model and Implications. In: KDD, pp. 6–14 (2012)
Yang, J., Leskovec, J.: Patterns of temporal variation in online media. In: WSDM, pp. 177–186 (2011)
Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in social networks. In: WWW, pp. 665–674 (2011)
Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: KDD, pp. 7–15 (2008)
Goyal, A., Bonchi, F., Lakshmanan, L.V.S.: Learning influence probabilities in social networks. In: WSDM, pp. 241–250 (2010)
Backstrom, L., Kleinberg, J., Kumar, R.: Optimizing web traffic via the media scheduling problem. In: KDD 2009 (2009)
Szabo, G., Huberman, B.A.: Predicting the popularity ofonline content. ArXiv e-prints (November 2008)
Wu, F., Huberman, B.A.: Novelty and collective attention. PNAS 104(45), 17599–17601 (2007)
Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of blogspace. In: WWW 2002 (2003)
Li, L., Prakash, B.A.: Time series clustering: Complex is simpler! In: ICML (2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Yu, Y., Hu, Y., Li, G. (2014). Temporal Curve Patterns Discovery of Information in BBS. In: Han, W., Huang, Z., Hu, C., Zhang, H., Guo, L. (eds) Web Technologies and Applications. APWeb 2014. Lecture Notes in Computer Science, vol 8710. Springer, Cham. https://doi.org/10.1007/978-3-319-11119-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-11119-3_5
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11118-6
Online ISBN: 978-3-319-11119-3
eBook Packages: Computer ScienceComputer Science (R0)