Skip to main content

Higher Order Sliding Mode Control of Uncertain Robot Manipulators

  • Chapter
  • First Online:
Advances and Applications in Sliding Mode Control systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 576))

Abstract

This chapter deals with the tracking problem of robot manipulators. These systems are described by highly nonlinear and coupled equations. Higher order sliding mode controllers are then proposed to ensure stability and robustness of uncertain robot manipulators. The motivation for using high order sliding mode mainly relies on its appreciable features, such as high precision and elimination of chattering in addition that ensures the same performance of conventional sliding mode like robustness. In this chapter we propose two high order sliding mode controllers. The first guarantees a continuous control eliminating the chattering phenomenon. Instead of a regular control input, the derivative of the control input is used in the proposed control law. The discontinuity in the controller is made to act on the time derivative of the control input. The actual control signal obtained by integrating the derivative control signal is smooth and chattering free. The second controller is an adaptive version of high order sliding mode controller. The goal is to obtain a robust high order sliding mode adaptive gain control law to respect to uncertainties and perturbations without the knowledge of uncertainties/perturbations bound. The proposed controller ensures robustness, precision and smoothness of the control signal. The stability and the robustness of the proposed controllers can be easily verified by using the classical Lyapunov criterion. The proposed controllers are tested to a three-degree-of-freedom robot to prove their effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abouissa, H., Dryankova, V., Jolly, D.: Real-time ramp metering: high-order sliding mode control and differential flatness concept. Int. J. Autom. Control Eng. 2(4), 151–160 (2013)

    Google Scholar 

  • Artega, M.-A., Kelly, R.: Robot control without velocity measeurements: new theory and experimental results. IEEE Trans. Robot. Autom. 20(2), 297–308 (2004)

    Article  Google Scholar 

  • Bartolini, G., Ferrara, A., Usai, E., Utkin, V.I.: On multi-input chattering-free second-order sliding mode control. IEEE Trans. Autom. Control 45(9), 1711–1717 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Beltran, B., Ahmed-Ali, T.: High-order sliding-mode controlof variable-speed wind turbines. IEEE Trans. Ind. Electron. 56(9), 3314–3320 (2009)

    Article  Google Scholar 

  • Bhat, S., Bernstein, D.: Geometric homogenity with applications to finite time stability. Math. Control signals Syst. 17(2), 101–127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Boiko, I., Fridman, L., Iriarte, R., Pisano, A., Usai, E.: Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators. Automatica 42(5), 833–839 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: A novel higher order sliding mode control scheme. Syst. Control Lett. 58(2), 102–108 (2009)

    Google Scholar 

  • Fridman, L., Levant, A.: High order sliding mode. In: Perruquetti, W., Barbot, J.P. (eds.) Sliding Mode Control In Engineering, pp. 53–102. Marcel Dekker, New York (2002)

    Google Scholar 

  • Haddad, W.H., Hayakawa, T.: Direct adaptive controlfor non-linear uncertain systems with exogenous disturbances. Int. J. Adapt. Control 16(2), 151–172 (2002)

    Article  MATH  Google Scholar 

  • Hamerlain, F., Achour, K., Floquet, T., Perruquetti, W.: Higher order sliding mode control of wheeled mobile robots in the presence of sliding effects. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference pp. 1959–1963 (2005)

    Google Scholar 

  • Han, X., Fridman, E., Spurgeon, S.K.: Sliding-mode control of uncertain systems in presence of unmatched disturbances with applications. Int. J. Control 83(12), 2413–2426 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Kachroo, P., Tomizuka, M.: Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Trans. Autom. Control 41(7), 1063–1068 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  • Kamal, S., Bandyopadlyay, B.: Arbitrary higher order sliding mode control based on control Lyapunov approach. In: 12th IEEE Workshop on Variable Structure Systems pp. 446-450 VSS (2012)

    Google Scholar 

  • Laghrouche, S., Smaoui, M., Plestan, F., Brun, X.: Higher order sliding modec ontrol based on optimal approach of an electropneumatic actuator. Int. J. Control 79(2), 119–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Laghrouche, S., Plestan, F., Glumineau, A.: Higher order sliding mode control based on integral sliding mode. Automatica 43(3), 531–537 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)

    Google Scholar 

  • Levant, A.: Control Universal SISO sliding mode controllers with finite time convergence. IEEE Trans. Autom 46(9), 1447–1451 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9/10), 924–941 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Levant, A.: Homogenity approach to high\_order sliding mode design. Automatica 41(5), 823–830 (2005a)

    Article  MathSciNet  MATH  Google Scholar 

  • Levant, A.: Quasi-continuous high-order sliding-mode controllers. IEEE Trans. Autom. control 50(9), 1447–1451 (2005b)

    Article  Google Scholar 

  • Levant, A.: Finite-time stabilization of uncertain SISO system. In: Proceedings of the 46th IEEE Conference on DecisionandControl, pp. 1728–1733 (2007)

    Google Scholar 

  • Lu, X.-Y., Spurgeon, S.K.: Robust sliding mode control of uncertain nonlinear systems. Syst. Control Lett. 32(2), 75–90 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Mezghani Ben Romdhane, N.: Control of robotic manipulator with integral sliding mode. J. Autom. Syst. Eng. 5(4), 185–198 (2011)

    Google Scholar 

  • Moreno, J.A.: Lyapunov approach for analysis and design of second order sliding mode alghorithms. In: 11th IEEE Workshop on Variable Structure Systems Plenaries andSemiplenaries pp. 121–149, Springer (2010)

    Google Scholar 

  • Msaddek, A., Gaaloul, A., Msahli, F.: A novel higher order sliding mode control: Application to an induction motor. In: International Conference on Control, Engineering and Information Technology, pp. 13–21. CEIT (2013)

    Google Scholar 

  • Perruquetti, W., Barbot, J.P.: Sliding Mode Control in Engineering. Marcel Dekker, New York (2002)

    Book  Google Scholar 

  • Plestan, F., Glumineau, A., Laghrouche, S.: A new algorithm for high-order sliding mode control. Int. J. Robust Nonlinear Control 18(4/5), 441–453 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: New methodologies for adaptive sliding mode control. Int. J. Control 83(9), 1907–1919 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Polyakov, A.E., Poznyak, A.S.: Method of Lyapunov functions for systems with higher order sliding modes. Autom. Remote Control 72(5), 944–963 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Rhif, A.: A High order sliding mode control with PID sliding surface: simulation on a torpedo. Int. J. Inf. Technol. Control Autom. 2(1), 1–13 (2012)

    Google Scholar 

  • Tsai, Y.-W., Mai, K.-H., Shyu, K.-K.: Sliding mode control for unmatched uncertain systems with totally invariant property and exponential stability. J. Chin. Inst. Eng. 29(1), 179–183 (2006)

    Article  Google Scholar 

  • Utkin, V.: Slidingmodes in controlandoptimization. Springer, Berlin (1992)

    Google Scholar 

  • Yan, F., Wang Z., Hung Y.S., Shu H.: Mixed filteringforuncertainsystemswith regional pole assignment. IEEE Trans. Aerospace Electr. Syst 41(2), 438–448 (2005)

    Google Scholar 

  • Young, K.D., Utkin, V.I., Ozguner, U.: A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol 7(3), 328–342 (1999).

    Google Scholar 

  • Zhao, Y.-X., Wu, T., Li, G.: A second-order slidingmodecontroller design for spacecraft tracking control. Math. Probl. Eng. 2013, 1–9 (2013)

    Google Scholar 

  • Zhang, R., Sun, C., Zhang, J., Zhou, Y.: Second-order terminal sliding mode control for hypersonic vehicle in cruising flight with sliding mode disturbance observer. J. Control Theory Appl. 11(2), 299–305 (2013)

    Article  Google Scholar 

  • Zhou, J., Wen, C., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 49(10), 1751–1757 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neila Mezghani Ben Romdhane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mezghani Ben Romdhane, N., Damak, T. (2015). Higher Order Sliding Mode Control of Uncertain Robot Manipulators. In: Azar, A., Zhu, Q. (eds) Advances and Applications in Sliding Mode Control systems. Studies in Computational Intelligence, vol 576. Springer, Cham. https://doi.org/10.1007/978-3-319-11173-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11173-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11172-8

  • Online ISBN: 978-3-319-11173-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics