Abstract
This chapter deals with the tracking problem of robot manipulators. These systems are described by highly nonlinear and coupled equations. Higher order sliding mode controllers are then proposed to ensure stability and robustness of uncertain robot manipulators. The motivation for using high order sliding mode mainly relies on its appreciable features, such as high precision and elimination of chattering in addition that ensures the same performance of conventional sliding mode like robustness. In this chapter we propose two high order sliding mode controllers. The first guarantees a continuous control eliminating the chattering phenomenon. Instead of a regular control input, the derivative of the control input is used in the proposed control law. The discontinuity in the controller is made to act on the time derivative of the control input. The actual control signal obtained by integrating the derivative control signal is smooth and chattering free. The second controller is an adaptive version of high order sliding mode controller. The goal is to obtain a robust high order sliding mode adaptive gain control law to respect to uncertainties and perturbations without the knowledge of uncertainties/perturbations bound. The proposed controller ensures robustness, precision and smoothness of the control signal. The stability and the robustness of the proposed controllers can be easily verified by using the classical Lyapunov criterion. The proposed controllers are tested to a three-degree-of-freedom robot to prove their effectiveness.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abouissa, H., Dryankova, V., Jolly, D.: Real-time ramp metering: high-order sliding mode control and differential flatness concept. Int. J. Autom. Control Eng. 2(4), 151–160 (2013)
Artega, M.-A., Kelly, R.: Robot control without velocity measeurements: new theory and experimental results. IEEE Trans. Robot. Autom. 20(2), 297–308 (2004)
Bartolini, G., Ferrara, A., Usai, E., Utkin, V.I.: On multi-input chattering-free second-order sliding mode control. IEEE Trans. Autom. Control 45(9), 1711–1717 (2000)
Beltran, B., Ahmed-Ali, T.: High-order sliding-mode controlof variable-speed wind turbines. IEEE Trans. Ind. Electron. 56(9), 3314–3320 (2009)
Bhat, S., Bernstein, D.: Geometric homogenity with applications to finite time stability. Math. Control signals Syst. 17(2), 101–127 (2005)
Boiko, I., Fridman, L., Iriarte, R., Pisano, A., Usai, E.: Parameter tuning of second-order sliding mode controllers for linear plants with dynamic actuators. Automatica 42(5), 833–839 (2006)
Defoort, M., Floquet, T., Kokosy, A., Perruquetti, W.: A novel higher order sliding mode control scheme. Syst. Control Lett. 58(2), 102–108 (2009)
Fridman, L., Levant, A.: High order sliding mode. In: Perruquetti, W., Barbot, J.P. (eds.) Sliding Mode Control In Engineering, pp. 53–102. Marcel Dekker, New York (2002)
Haddad, W.H., Hayakawa, T.: Direct adaptive controlfor non-linear uncertain systems with exogenous disturbances. Int. J. Adapt. Control 16(2), 151–172 (2002)
Hamerlain, F., Achour, K., Floquet, T., Perruquetti, W.: Higher order sliding mode control of wheeled mobile robots in the presence of sliding effects. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference pp. 1959–1963 (2005)
Han, X., Fridman, E., Spurgeon, S.K.: Sliding-mode control of uncertain systems in presence of unmatched disturbances with applications. Int. J. Control 83(12), 2413–2426 (2010)
Kachroo, P., Tomizuka, M.: Chattering reduction and error convergence in the sliding-mode control of a class of nonlinear systems. IEEE Trans. Autom. Control 41(7), 1063–1068 (1996)
Kamal, S., Bandyopadlyay, B.: Arbitrary higher order sliding mode control based on control Lyapunov approach. In: 12th IEEE Workshop on Variable Structure Systems pp. 446-450 VSS (2012)
Laghrouche, S., Smaoui, M., Plestan, F., Brun, X.: Higher order sliding modec ontrol based on optimal approach of an electropneumatic actuator. Int. J. Control 79(2), 119–131 (2006)
Laghrouche, S., Plestan, F., Glumineau, A.: Higher order sliding mode control based on integral sliding mode. Automatica 43(3), 531–537 (2007)
Levant, A.: Robust exact differentiation via sliding mode technique. Automatica 34(3), 379–384 (1998)
Levant, A.: Control Universal SISO sliding mode controllers with finite time convergence. IEEE Trans. Autom 46(9), 1447–1451 (2001)
Levant, A.: Higher-order sliding modes, differentiation and output-feedback control. Int. J. Control 76(9/10), 924–941 (2003)
Levant, A.: Homogenity approach to high\_order sliding mode design. Automatica 41(5), 823–830 (2005a)
Levant, A.: Quasi-continuous high-order sliding-mode controllers. IEEE Trans. Autom. control 50(9), 1447–1451 (2005b)
Levant, A.: Finite-time stabilization of uncertain SISO system. In: Proceedings of the 46th IEEE Conference on DecisionandControl, pp. 1728–1733 (2007)
Lu, X.-Y., Spurgeon, S.K.: Robust sliding mode control of uncertain nonlinear systems. Syst. Control Lett. 32(2), 75–90 (1997)
Mezghani Ben Romdhane, N.: Control of robotic manipulator with integral sliding mode. J. Autom. Syst. Eng. 5(4), 185–198 (2011)
Moreno, J.A.: Lyapunov approach for analysis and design of second order sliding mode alghorithms. In: 11th IEEE Workshop on Variable Structure Systems Plenaries andSemiplenaries pp. 121–149, Springer (2010)
Msaddek, A., Gaaloul, A., Msahli, F.: A novel higher order sliding mode control: Application to an induction motor. In: International Conference on Control, Engineering and Information Technology, pp. 13–21. CEIT (2013)
Perruquetti, W., Barbot, J.P.: Sliding Mode Control in Engineering. Marcel Dekker, New York (2002)
Plestan, F., Glumineau, A., Laghrouche, S.: A new algorithm for high-order sliding mode control. Int. J. Robust Nonlinear Control 18(4/5), 441–453 (2008)
Plestan, F., Shtessel, Y., Bregeault, V., Poznyak, A.: New methodologies for adaptive sliding mode control. Int. J. Control 83(9), 1907–1919 (2010)
Polyakov, A.E., Poznyak, A.S.: Method of Lyapunov functions for systems with higher order sliding modes. Autom. Remote Control 72(5), 944–963 (2011)
Rhif, A.: A High order sliding mode control with PID sliding surface: simulation on a torpedo. Int. J. Inf. Technol. Control Autom. 2(1), 1–13 (2012)
Tsai, Y.-W., Mai, K.-H., Shyu, K.-K.: Sliding mode control for unmatched uncertain systems with totally invariant property and exponential stability. J. Chin. Inst. Eng. 29(1), 179–183 (2006)
Utkin, V.: Slidingmodes in controlandoptimization. Springer, Berlin (1992)
Yan, F., Wang Z., Hung Y.S., Shu H.: Mixed filteringforuncertainsystemswith regional pole assignment. IEEE Trans. Aerospace Electr. Syst 41(2), 438–448 (2005)
Young, K.D., Utkin, V.I., Ozguner, U.: A control engineer’s guide to sliding mode control. IEEE Trans. Control Syst. Technol 7(3), 328–342 (1999).
Zhao, Y.-X., Wu, T., Li, G.: A second-order slidingmodecontroller design for spacecraft tracking control. Math. Probl. Eng. 2013, 1–9 (2013)
Zhang, R., Sun, C., Zhang, J., Zhou, Y.: Second-order terminal sliding mode control for hypersonic vehicle in cruising flight with sliding mode disturbance observer. J. Control Theory Appl. 11(2), 299–305 (2013)
Zhou, J., Wen, C., Zhang, Y.: Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis. IEEE Trans. Autom. Control 49(10), 1751–1757 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Mezghani Ben Romdhane, N., Damak, T. (2015). Higher Order Sliding Mode Control of Uncertain Robot Manipulators. In: Azar, A., Zhu, Q. (eds) Advances and Applications in Sliding Mode Control systems. Studies in Computational Intelligence, vol 576. Springer, Cham. https://doi.org/10.1007/978-3-319-11173-5_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-11173-5_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11172-8
Online ISBN: 978-3-319-11173-5
eBook Packages: EngineeringEngineering (R0)