Skip to main content

Rigid Spacecraft Fault-Tolerant Control Using Adaptive Fast Terminal Sliding Mode

  • Chapter
  • First Online:
Advances and Applications in Sliding Mode Control systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 576))

  • 4326 Accesses

Abstract

In addition to the robustness against inertia uncertainty and external disturbances, the efficient and quick fault-tolerant property is expected by the on-board attitude controller for any spacecraft mission. In comparison to the active fault tolerant control methods, the passive fault-tolerant methods are simpler and require less computation time and power. The finite-time sliding mode using the terminal sliding mode has been proven the efficacy to address the attitude control related issues, but in most of the cases, fault-tolerant issues were not taken into account. The objective of the chapter here is to propose a passive fault-tolerant control by using the finite-time sliding mode control. Firstly, an extensive review has been given to discuss the application of terminal sliding mode and its variants for the attitude control problem. Then, in control design, a non-singular fast terminal sliding mode has been integrated together with the adaptive control, and an adaptive non-singular fast terminal sliding mode control has been designed. In most of the finite time fault-tolerant designed using terminal sliding modes, the controllers gains are remain to constant; which can be cause for chattering. Therefore, to limit the chattering effect, and to avoid the need of upper bounds of uncertainty and external disturbances, adaptive estimate laws have been designed to estimate the controller’s gains. Finite time stability has been analyzed by the Lyapunov theorem. Further, to show the fault-tolerance effectiveness of the proposed control law in attitude stabilization and tracking, various simulation results have been presented. The proposed control law is quick, and robust enough to negate the effects of external disturbances, mass inertia uncertainty, and actuator faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bustan, D., Sani, S.K.H., Pariz, N.: Adaptive fault-tolerant spacecraft attitude control design with transient response Control. IEEE/ASME Trans. Mechatron. 19(4), 1404–1411 (2013)

    Google Scholar 

  • Ding, S., Li, S.: Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques. Aerosp. Sci. Technol. 13(4–5), 256–265 (2009)

    Article  Google Scholar 

  • Erdong, J., Zhaowei, S.: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 12(4), 324–330 (2008)

    Article  MATH  Google Scholar 

  • Feng, Y., Yu, X.H., Man, Z.: Non-singular terminal sliding mode control of rigid manipulator. Automatica 38(12), 2159–2167 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Haimo, V.T.: Finite time controllers. SIAM J. Control Optim 24(4), 760–770 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  • Hung, J.Y., Gao, W., Hung, J.C.: Variable structure control: a survey. IEEE. Trans. Ind. Electron. 40(1), 1–12 (1993)

    Google Scholar 

  • Hu, Q., Huo, X., Xiao, B., Zhang, Z.: Robust finite-time control for spacecraft attitude stabilization under actuator fault. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng. 226(3), 416–428 (2012)

    Google Scholar 

  • Hu, Q., Xing, Huo, Xiao, B.: Reaction wheel fault tolerant control for spacecraft attittude stabilization with finite time convergence. Int. J. Robust Nonlinear Control 23(15), 1737–1752 (2012)

    Google Scholar 

  • Hu, Q., Li, B., Zhang, Aihua: Robust finite-time control allocation in spacecraft attitude stabilization under actuator misalignment. Nonlinear Dyn. 73(1–2), 53–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, S., Wang, Z., Fei, S.: Comments on paper: Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerosp. Sci. Technol. 15(3), 193–195 (2011)

    Article  Google Scholar 

  • Lu, K., Xia, Y.: Finite-time attitude stabilization for rigid spacecraft. Intern. J. Robust Nonlinear Control (2013). doi:10.1002/rnc.3071

  • Lu, K., Xia, Y., Fu, M.: Controller design for rigid spacecraft attitude tracking with actuator saturation. Inf. Sci. 220, 343–366 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, Kunfeng, Xia, Y., Fu, M.: Finite-time fault-tolerant control for rigid spacecraft with actuator saturations. IET Control Theory Appl. 7(11), 1529–1539 (2013)

    Article  MathSciNet  Google Scholar 

  • Man, Z., Yu, X.H.: Terminal sliding mode control of MIMO linear systems. IEEE. Trans. on Circuits Syst. 44(11), 1065–1070 (1997)

    Article  MathSciNet  Google Scholar 

  • Tang, Y.: Terminal sliding mode control of rigid robots. Automatica 34(1), 51–56 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Tiwari, P.M., Janardhanan, S., Nabi, M.: A finite time convergent continuous time sliding mode controller for spacecraft attitude control. The 2010 IEEE International Workshop on Variable Structure Systems, 26–28 June 2010, Mexico City, pp. 399–403 (2010). doi:10.1109/VSS.2010.5544630

  • Tiwari, P.M., Janardhanan, S., Nabi, M.: Spacecraft attitude control using non-singular finite time convergence fast terminal sliding mode. Intern. J. Instrum. Technol. 1(2), 124–142 (2012)

    Article  Google Scholar 

  • Tiwari, P.M., Janardhanan, S., Nabi, M.: Rigid spacecraft attitude tracking using finite time sliding mode control. In: The 2014 International Conference on Advances in Control and Optimization of Dynamical Systems, 13–15 March 2014, India, pp. 263–270, (2014). doi:10.3182/20140313-3-IN-3024.00168

  • Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Venkataraman, S.T., Gulati, S.: Terminal sliding modes: A new approach. The 1991 International Conference on Advanced Robotics, 19–22 June 1991, Italy, pp. 443–448, (1991). doi:10.1109/ICAR.1991.240613

  • Vadali, S.R.: Variable-structure control of spacecraft large-Angle Maneuvers. J. Guidance 9(2), 235–239 (1986)

    Article  MATH  Google Scholar 

  • Wertz, W.: Spacecraft Attitude Determination and Control. In: J. Wertz (ed.), Academic Publishers, New York (1978)

    Google Scholar 

  • Xiao, B., Hu, Q., Wang, D., Poh, E.K.: Attitude tracking control of rigid spacecrafts with actuator misalignment and fault. IEEE Trans. Control System Technol. 21(6), 2360–2366 (2013)

    Article  Google Scholar 

  • Yeh, F.K.: Sliding-mode adaptive attitude controller design for spacecrafts with thrusters. IET Control Theory Appl. 4(7), 1254–1264 (2010)

    Article  Google Scholar 

  • Yu, X.H., Man, Z.: On finite time mechanism: Terminal sliding modes. In: The 1996 IEEE International Workshop on Variable Structure Systems, 5–6 Dec 1996, Tokyo, pp. 164–167, (1996). doi:10.1109/VSS.1996.578596

  • Yu, X.H., Man, Z.: Fast terminal sliding mode control for nonlinear dynamical systems. IEEE. Trans. Circuits Syst. I: Fundam. Theory Appl. 49(2), 261–264 (2002)

    Article  MathSciNet  Google Scholar 

  • Yu, S., Yu, X.H., Shirinzadeh, B., Man, Z.: Continuous finite-time control for Robotic manipulator with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, L., Yang, J.: Nonsingular fast terminal sliding mode control for nonlinear dynamical systems. Intern. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MATH  Google Scholar 

  • Zou, A.-M., Kumar, K.D.: Finite-time attitude tracking control for spacecraft using terminal sliding mode and chebyshev neural network. IEEE. Trans. Syst. Man Cybern. 41(4), 950–963 (2011)

    Article  Google Scholar 

  • Zhang, A., Hu, Q., Friswell, M.: Finite-time fault tolerant attitude control for over-activated spacecraft subject to actuator misalignment and faults. IET Control Theory Appl. 7(16), 2007–2020 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyare Mohan Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tiwari, P.M., Janardhanan, S., un-Nabi, M. (2015). Rigid Spacecraft Fault-Tolerant Control Using Adaptive Fast Terminal Sliding Mode . In: Azar, A., Zhu, Q. (eds) Advances and Applications in Sliding Mode Control systems. Studies in Computational Intelligence, vol 576. Springer, Cham. https://doi.org/10.1007/978-3-319-11173-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11173-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11172-8

  • Online ISBN: 978-3-319-11173-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics