Skip to main content

Transient Stability Enhancement of Power Systems Using Observer-Based Sliding Mode Control

  • Chapter
  • First Online:
Advances and Applications in Sliding Mode Control systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 576))

Abstract

The high complexity and nonlinearity of power systems, together with their almost continuously time-varying nature, have presented a big challenge for control engineers, for decades. The disadvantages of the linear controllers/models, such as being dependent on the operating condition, sensibility to the disturbance such as parametric variations or faults can be overcome by using appropriate nonlinear control techniques. Sliding-mode control technique has been extensively used when a robust control scheme is required. This chapter presents the transient stabilization with voltage regulation analysis of a synchronous power generator driven by steam turbine and connected to an infinite bus. The aim is to obtain high performance for the terminal voltage and the rotor speed simultaneously under a large sudden fault and a wide range of operating conditions. The methodology adopted is based on sliding mode control technique. First, a nonlinear sliding mode observer for the synchronous machine damper currents is proposed. Next, the control laws of the complete ninth order model of a power system, which takes into account the stator dynamics as well as the damper effects, are developed. They are shown to be asymptotically stable in the context of Lyapunov theory. Finally, the effectiveness of the proposed combined observer-controller for the transient stabilization and voltage regulation is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\({v}_{d}{,v}_{q}\) :

Direct and quadrature axis stator terminal voltage components, respectively

\({v}_{fd}\) :

Excitation control input

\({v}_{t}\) :

Terminal voltage

\(i_{d}{,i}_{q}\) :

Direct and quadrature axis stator current components, respectively

\(i_{fd}\) :

Field winding Current

\(i_{kd}{,i}_{kq}\) :

Direct and quadrature axis damper winding current components, respectively

\(\lambda _{d}{,\lambda }_{q}\) :

Direct and quadrature axis flux linkages, respectively

\(R_{s}\) :

Stator resistance

\(R_{fd}\) :

Field resistance

\(R_{kd}{,R}_{kq}\) :

Damper winding resistances

\({L}_{d}{,L}_{q}\) :

Direct and quadrature self inductances, respectively

\(L_{fd}\) :

Rotor self inductance

\(L_{kd}{,L}_{kq}\) :

Direct and quadrature damper winding self inductances, respectively

\(L_{md}{,L}_{mq}\) :

Direct and quadrature magnetizing inductances, respectively

\(\omega \) :

Angular speed of the generator

\(\delta \) :

Rotor angle of the generator

\({T}_{m}\) :

Mechanical torque

\(T_{e}\) :

Electromagnetic torque

D :

Damping constant

H :

Inertia constant

a :

Phase angle of infinite bus voltage

\({V}^{\propto }\) :

Infinite bus voltage

\(L_{e}\) :

Inductance of the transmission line

\(R_{e}\) :

Resistance of the transmission line

References

  • Abbadi, A., Nezli, L., Boukhetala, D.: A nonlinear voltage controller based on interval type 2 fuzzy logic control system for multi-machine power systems. Int. J. Electr. Power Energy Syst. 45(1), 456–467 (2013)

    Google Scholar 

  • Ahmed, S.S., Chen, L., Petroianu, A.: Design of suboptimal H\(\infty \) excitation controllers. IEEE Trans. Power Syst. 11(21), 312–318 (1996)

    Article  Google Scholar 

  • Akhrif, O., Okou, F.A., Dessaint, L.A., Champagne, R.: Application of mulitivariable feedback linearization scheme for rotor angle stability and voltage regulation of power systems. IEEE Trans. Power Syst. 14(2), 620–628 (1999)

    Article  Google Scholar 

  • Alkhatib, H., Duveau, J.: Dynamic genetic algorithms for robust design of multi-machine power system stabilizers. Int. J. Electr. Power Energy Syst. 45(1), 242–245 (2013)

    Article  Google Scholar 

  • Anderson, P.M., Fouad, A.A.: Power System Control and Stability. IEEE Press, New York (1994)

    Google Scholar 

  • Astrom K.J., Wittenmark, B.: Adaptive Control, 2nd edn. Addison-Wesley Publishing Company, Chicago (1995)

    Google Scholar 

  • Byrnes, C.I., Isidori, A., Willems, J.C.: Passivity, feedback equivalence, and the global stabilization of minimum phase non linear systems. IEEE Trans. Autom. Control 36(11), 1228–1240 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • Cabrera-Vazquez, J., Loukianov, A.G., Canedo, J.M., Utkin, V.I.: Robust controller for synchronous generator with local load via VSC. Int. J. Electr. Power. Energy Syst. 29(4), 348–359 (2007)

    Article  Google Scholar 

  • Cheng, C.H., Hsu, Y.Y.: Damping of generator oscillation using an adaptive static var compensator. IEEE Trans. Power Syst. 7(2), 718–724 (1992)

    Article  Google Scholar 

  • Colbia-Vega, de Léon-Morales, J., Fridman, L., Salas-Péna, O., Mata-Jiménez, M.T.: Robust excitation control design using sliding-mode technique for multimachine power systems. Electr. Power Syst. Res. 78(9), 1627–1643 (2008)

    Google Scholar 

  • De Mello, F.P.: Measurement of synchronous machine rotor angle from analysis of zero sequence harmonic components of machine terminal voltage. IEEE Trans. Power Deliv. 9(4), 1770–1777 (1994)

    Article  MathSciNet  Google Scholar 

  • Galaz, M., Ortega, R., Bazanella, A.S., Stankovic, A.M.: An energy-shaping approach to the design of excitation control of synchronous generators. Automatica 39(1), 111–119 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Gao, L., Chen, L., Fan, Y., Ma, H.: A nonlinear control design for power systems. Automatica 28(5), 975–979 (1992)

    Google Scholar 

  • Ghandakly, A., Dai, J.: An adaptive synchronous generator stabilizer design by generalized multivariable pole shifting (GMPS) technique. IEEE Trans. Power Syst. 7(3), 436–446 (2000)

    Google Scholar 

  • Ghandakly, Adel, A., Farhoud, A. M.: A parametrically optimized self tuning regulator for power system stabilizers. IEEE Trans. Power Syst. 7(3), 1245–1250 (1992)

    Google Scholar 

  • Ghazizadeh, M.S., Hughes, F.M.: A generator transfer function regulator for improved excitation control. IEEE Trans. Power Syst. 13(2), 437–441 (1998)

    Article  Google Scholar 

  • Guo, Y., Hill, D.J., Wang, Y.: Global transient stabilility and voltage regulation for power systems. IEEE Trans. Power Syst. 16(4), 678–688 (2001)

    Article  Google Scholar 

  • Hill, D.J., Wang, Y.: Nonlinear decentralized control of large scale power systems. Automatica 36(9), 1275–1289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Huerta, H., Alexander, G., Loukianov, Cañedo, J. M.: Decentralized sliding mode block control of multimachine power systems. Int. J. Electr. Power Energy Syst. 32(1), 1–11 (2010)

    Google Scholar 

  • Isidori, A.: Nonlinear Control Systems, 3rd edn. Springer, New York (1995)

    Book  MATH  Google Scholar 

  • Jain, S., Khorrami, F., Fardanesh, B.: Adaptive nonlinear excitation control of power system with unknown interconnections. IEEE Trans. Control Syst. Technol. 2(4), 436–446 (1994)

    Article  Google Scholar 

  • Jiao, X., Sun, Y., Shen, T.: Adaptive controller design for a synchronous generator with unknown perturbation in mechanical power. Int. J. Control Autom. Syst. 3(2), 308–314 (2005)

    Google Scholar 

  • Jiawei, Y., Zhu, C., Chengxiong, M., Dan, W., Jiming, L., Jianbo, S., Miao, L., Dah, L., Xiaoping, L.: Analysis and assessment of VSC excitation system for power system stability enhancement. Int. J. Electr. Power Energy Syst. 7(5), 350–357 (2014)

    Google Scholar 

  • Karimi, A., Feliachi, A.: Decentralized adaptive backstepping of electric power systems. Electr. Power Syst. Res. 78(3), 484–493 (2008)

    Article  Google Scholar 

  • Khorrami, F., Jain, S., Fardanesh, B.: Adaptive nonlinear excitation control of power system with unknown interconnections. IEEE Trans. Control Syst. Technol. 2(4), 436–446 (1994)

    Article  Google Scholar 

  • King, C.A., Chapman, J.W., Ilic, M.D.: Feedback linearizing excitation control on a full-scale power system model. IEEE Trans. Power Syst. 9(2), 1102–1109 (1994)

    Article  Google Scholar 

  • Kokotovic, P.V.: The joy of feedback: non-linear and adaptive. IEEE Control Syst. Mag. 12(3), 7–17 (1992)

    Article  Google Scholar 

  • Krstić, M., Kanellakopoulos, I., Kokotović, P.: Nonlinear and adaptive control design. Wiley Interscience Publication, New York (1995)

    Google Scholar 

  • Kundur, G.P.: Power System Stability and Control. McGraw- Hill, New York (1994)

    Google Scholar 

  • Loukianov, A.G., Canedo, J.M., Utkin, V.I., Cabrera-Vazquez, J.: Discontinuous controller for power systems: sliding mode block control approach. IEEE Trans. Ind. Electron. 51(2), 340–353 (2004)

    Article  Google Scholar 

  • Mohagheghi, S., Valle, Y., Venayagamoorthy, G.K., Harley, R.G.: A proportional-integrator type adaptive critic design-based neuro-controller for a static compensator in a multimachine power system. IEEE Trans. Ind. Electron. 54(1), 86–96 (2007)

    Article  Google Scholar 

  • Morales, J.D., Busawon, K., Acosta-Villarreal, G., Acha- daza, S.: Nonliear control for small synchronous generator. Int. J. Electr. Power Energy Syst. 23(1), 1–11 (2001)

    Google Scholar 

  • Mrad, F., Karaki, S., Copti, B.: An adaptive fuzzy-synchronous machine stabilizer. IEEE Trans. Syst. Man Cybern Part C 30(1), 131–137 (2000)

    Article  Google Scholar 

  • Narendra, K.S., Balakrishnan, J.: Adaptive control using multiple models. IEEE Trans. Autom. Control 42(2), 171–187 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Nickllasson, P.J., Ortega, R., Espinosa Perez, G.: Passivity-based control of a class of Blondel-Park transformable electric machines. IEEE Trans. Autom. Control 42(5), 629–649 (1997)

    Google Scholar 

  • Ohtsuk, K., Taniguchi, T., Sato, T.: A H\(\infty \) optimal theory based generator control system. IEEE Trans. Power Syst. 7(1), 108–113 (1992)

    Article  Google Scholar 

  • Ortega, R., Lorı’a, A., Nicklasson, P., Sira-Ramıre, H.: Passivity-Based Control of Euler-Lagrange Systems. Springer, London (1998)

    Book  Google Scholar 

  • Ouassaid, M., Nejmi, A., Cherkaoui, M., Maaroufi, M.: A Nonlinear backstepping controller for power systems terminal voltage and rotor speed controls. Int. Rev. Autom. Control. 3(1), 355–363 (2008)

    Google Scholar 

  • Ouassaid, M., Maaroufi, M., Cherkaoui, M.: Decentralized nonlinear adaptive control and stability analysis of multimachine power system. Int. Rev. Electr. Eng. 5(6), 2754–2763 (2010)

    Google Scholar 

  • Ouassaid, M., Maaroufi, M., Cherkaoui, M.: Observer based nonlinear control of power system using sliding mode control strategy. Electr. Power Syst. Res. 84(1), 153–143 (2012)

    Article  Google Scholar 

  • Park, J.W., Harley, R.G., Venayagamoorthy, G.K.: Adaptive-critic-based optimal neurocontrol for synchronous generators in a power system using MLP/RBF neural networks. IEEE Trans. Ind. Appl. 39(5), 1529–1540 (2003)

    Article  Google Scholar 

  • Segal, R., Kothari, M.L., Madnani, S.: Radial basis function (RBF) network adaptive power system stabilizer. IEEE Trans. Power Syst. 15(2), 722–727 (2000)

    Article  Google Scholar 

  • Shamsollahi, P., Malik, O.P.: An adaptive power system stabilizer using on-line trained neural network. IEEE Trans. Energy Convers. 12(4), 382–389 (1997)

    Article  Google Scholar 

  • Shen, T., Mei, S., Lu, Q., Hu, W., Tamura, K.: Adaptive nonlinear excitation control with L2 disturbance attenuation for power systems. Automatica 39(1), 81–89 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Slotine, J.J.E., Li, W.: Applied Nonlinear Control. Prentice-Hall, Englewoods Cliffs (1991)

    MATH  Google Scholar 

  • Tan, Y., Wang, Y.: Augmentation of transient stability using a supperconduction coil and adaptive nonlinear control. IEEE Trans. Power Syst. 13(2), 361–366 (1998)

    Article  Google Scholar 

  • Utkin, V.I.: Variable structure systems with sliding modes. IEEE Trans. Autom. Control 22(2), 212–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Utkin, V.I., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, London (1999)

    Google Scholar 

  • Venayagamoorthy, G.K., Harley, R.G., Wunsch, D.C.: Dual heuristic programming excitation neurocontrol for generators in a multimachine power system. IEEE Trans. Ind. Appl. 39(2), 382–394 (2003)

    Article  Google Scholar 

  • Wang, S.K.: A novel objectif function and algorithm for optimal PSS parameter design in a multi-machine power system. IEEE Trans. Power Syst. 28(1), 522–531 (2013)

    Article  Google Scholar 

  • Wang, Y., Cheng, D., Li, C., Ge, Y.: Dissipative Hamiltonian realization and energybased L2-disturbance attenuation control of multimachine power systems. IEEE Trans. Autom. Control 48(8), 1428–1433 (2003)

    Article  MathSciNet  Google Scholar 

  • Wu, B., Malik, O.P.: Multivariable adaptive control of synchronous machines in a multimachine power system. IEEE Trans. Power Syst. 21(2), 1772–1787 (2006)

    Article  Google Scholar 

  • Xi, Z., Cheng, D., Lu, Q., Mei, S.: Nonlinear decentralized controller design for multimachine power systems using Hamiltonian function method. Automatica 38(2), 527–534 (2002)

    Article  MATH  Google Scholar 

  • Zhao, Q., Jiang, J.: Robust controller design for generator excitation systems. IEEE Trans. Energy Convers. 28(2), 201–207 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ouassaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ouassaid, M., Maaroufi, M., Cherkaoui, M. (2015). Transient Stability Enhancement of Power Systems Using Observer-Based Sliding Mode Control. In: Azar, A., Zhu, Q. (eds) Advances and Applications in Sliding Mode Control systems. Studies in Computational Intelligence, vol 576. Springer, Cham. https://doi.org/10.1007/978-3-319-11173-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11173-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11172-8

  • Online ISBN: 978-3-319-11173-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics