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Abstract

More complex data formats and dedicated structure metrics have spurred
the development of intuitive machine learning techniques which directly
deal with dissimilarity data, such as relational learning vector quantiza-
tion (RLVQ). The adjustment of metric parameters like relevance weights
for basic structural elements constitutes a crucial issue therein, and first
methods to automatically learn metric parameters from given data were
proposed recently. In this contribution, we investigate a robust learning
scheme to adapt metric parameters such as the scoring matrix in sequence
alignment in conjunction with prototype learning, and we investigate the
suitability of efficient approximations thereof.

1 Introduction

An ever increasing availability of problem-specific data formats and a rapidly
growing data complexity raises the issue that data are often no longer vectorial,
rather data structures such as sequences, trees, graphs, or similar have to be
dealt with [3]. One prominent approach which enables machine learning for
structures is based on a dissimilarity representation [14]: data are described
by pairwise dissimilarities given by some problem-specific dissimilarity measure
such as sequence alignment, structure alignment, graph or tree kernels. Then
any machine learning technique which is capable of processing proximity data
can be applied.

Facing such data, one particular problem with classical learning techniques
is the inherent discrete nature of structured data, hence smooth model updates
become difficult. For dissimilarity data we can rely on an implicit embedding
of data in an underlying pseudo-Euclidean vector space or more general Krein
space [14]. Mimicking the popular kernel trick, it is possible to extend many
vectorial, distance-based methods to such an embedding, resulting in so-called
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relational methods. Popular examples include unsupervised models such as
relational self-organising maps and relational generative topographic mapping,
or supervised counterparts such as learning vector quantization (LVQ) based
schemes. [7, 4, 6]. Here we will exemplarily address prototype-based LVQ.

Specifically, we will consider relational generalized LVQ (RGLVQ) as an ex-
tension of generalized LVQ (GLVQ) to dissimilarity data [7]. GLVQ constitutes
a popular and mathematically well-founded LVQ scheme with successful appli-
cations ranging from bioinformatics to robotics [15, 10, 16]. One interesting
extension is its combination with metric learning, which not only enhances the
representational power but also facilitates model interpretability [16]. While
relational variants also yield a robust prototype-based model, their metric pa-
rameters are usually fixed, failing in situations where these parameters are un-
suitable. We address the challenge to adapt metric parameters in RGLVQ,
extending upon a well-proven concept of smooth metric learning in vectorial
GLVQ [16].

More specifically, we consider symbolic sequences and sequence alignment as
one relevant type of structured representation. Alignment heavily depends on
the underlying scoring matrix which assigns scores to local symbolic comparisons
and gaps. In bioinformatics, these can be inferred from evolutionary models,
but in general their choice is based on a-priori assumptions about the domain
or data space [17]. A few promising approaches how to infer scores from exem-
plary alignments have been proposed [5, 18, 1, 2]. One approach proposes to
adapt scores for a discriminative classification task in conjunction with RGLVQ
training, leading to first promising results [12]. The goal of this contribution
is to extend this approach to a more robust adaptation suitable for realistic
problems, and to test how it can be approximated to increase computational
efficiency.

2 Learning vector quantization for sequence align-

ments

LVQ models represent vectorial data ~ai by prototypes ~wj with labels c(~wj) [16].
Classification uses a winner-takes-all rule: a data point is classified according to
its closest prototype. Given labeled data (~ai, c(~ai)), GLVQ minimizes the cost

N
∑

i=1

Φ

(

d+(~ai)− d−(~ai)

d+(~ai) + d−(~ai)

)

where Φ is a monotonic function, d+ is the distance of ~ai to the closest prototype
with a matching label, d− refers to a non-matching label [16].

For dissimilarity data described by a symmetric matrix D with entries dij ,
an extension to relational LVQ is possible [14, 7]: a pseudo-Euclidean space
and vectors ~ai exist which induce dij [14]. Prototypes are given as convex

combinations ~wj =
∑

i α
j
i~a
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j
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∑

l α
j
l dil −

0.5
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j
l′dll′ . This can be computed based on the coefficients ~αj and dissim-

ilarities D only, without explicitly referring to vectors ~ai or their counterparts of
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actual data entities (e.g. string sequences), see [7]. We can adapt the coefficients
~α+ or ~α− of the closest correct or incorrect prototype, by a stochastic gradient
descent.

For sequence data, we can choose dissimilarities D according to pairwise
alignments. We denote sequences over an alphabet Σ as ā = (a1, . . . , aI , . . . , a|ā|)
with ai ∈ Σ and length |ā|. Assume a symmetric dissimilarity measure dλ(ai, aj) =
λij is fixed on (Σ ∪ {−})2 with dλ(ai, ai) = 0 and dλ(ai, bj) ≥ 0 for ai 6= bj ∈
Σ ∪ {−}. A (global) alignment of sequences ā and b̄ consists of extensions (ā∗,
b̄∗) ∈ ((Σ ∪ {−})∗)2 by gaps such that |ā∗| = |b̄∗|. Alignment costs are

d∗(ā, b̄) = min







|ā∗|
∑

i=1

dλ(a
∗
i , b

∗
i )

∣

∣ (ā∗, b̄∗) is alignment of (ā, b̄)







.

Setting ā(I) = (a1, . . . , aI) and b̄(J) = (b1, . . . , bJ ), alignment costs can be
computed by dynamic programming (DP) using the recursion

d∗(ā(0), b̄(0)) = 0, d∗(ā(0), b̄(J)) =
∑

j≤J dλ(−, bj),

d∗(ā(I), b̄(0)) =
∑

i≤I dλ(ai,−),

d∗(ā(I + 1), b̄(J + 1)) = min{ A1 := d∗(ā(I), b̄(J)) + dλ(aI+1, bJ+1),
A2 := d∗(ā(I + 1), b̄(J)) + dλ(−, bJ+1),
A3 := d∗(ā(I), b̄(J + 1)) + dλ(aI+1,−) } .

3 Adaptive scoring for alignments

Sequence alignment crucially depends on the scores λ of dλ. Similar to [12],
we propose an adaptation of λ based on the RGLVQ costs. Derivatives of the
summand corresponding to a sequence āi with respect to λkm yield

Φ′ ·
2d−(āi)

(d+(āi) + d−(āi))2
·
∂d+(āi)

∂λkm

− Φ′ ·
2d+(āi)

(d+(āi) + d−(āi))2
·
∂d−(āi)

∂λkm

with ∂d(āi, w̄j)/∂λkm =
∑

l α
j
l ∂d

∗
il/∂λkm − 0.5

∑

ll′ α
j
lα

j
l′∂d

∗
ll′/∂λkm where d∗il

refers to the alignment of sequences i and l. Alignment d∗(ā, b̄) is not differen-
tiable, but an approximation is, substituting min by
softmin(x1, . . . , xn) =

∑

i xi · exp(−βxi)
/
∑

j exp(−βxj) with the derivative

softmin′(xi) = (1−β ·(xi−softmin))·exp(−βxi)/
∑

j exp(−βxj). The derivative

∂d∗(ā, b̄)/∂λkm can be computed in a DP scheme analog to the alignment:

∂d∗(ā(I+1),b̄(J+1))
∂λkm

= softmin′(A1) ·
(

∂d∗(ā(I),b̄(J))
∂λkm

+ δk(aI+1)δm(bJ+1)
)

+ softmin′(A2) ·
(

∂d∗(ā(I+1),b̄(J))
∂λkm

+ δk(−)δm(bJ+1)
)

+ softmin′(A3) ·
(

∂d∗(ā(I),b̄(J+1))
∂λkm

+ δk(aI+1)δm(−)
)

where δk(ai) tests whether the symbol ai is element k in Σ.
We will investigate the role of the parameter β and efficient approxima-

tions of the computation in the experiments. For β → ∞ the derivative
∂d∗(ā, b̄)/∂λkm converges to the number of times symbols number k and m
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Figure 1: Visualizations of the scoring matrix λ, where color/intensity encodes
the values. On the left is a standard choice of λ which also serves as the ini-
tial state for the training, the middle and right show the final state of λ after
adaptation.

are paired in the alignment (ā, b̄). For β → 0, all three possible choices A1, A2,
and A3 are taken into account and no alignment paths stand out for the adapta-
tion, resulting in homogeneous values λkm. It is expected that optimal choices
lie in between these extremes, corresponding to a good balance of exploitation
of optimal alignment paths and exploration of competing alignment paths with
similar quality. The latter is particularly relevant at the beginning of training
and for large |Σ|. Because of the computational complexity, experiments have
been reduced to the crisp case β → ∞ only in [12]. Here, we will investigate
different choices β, and will rely on the following two approximations for effi-
ciency:

Approximation of prototypes by closest exemplars: ∂d(āi, w̄j)/∂λkm refers to two

sums with all coefficients αj
l of w̄j . We use a k-approximation of the prototype

which restricts to the closest k exemplars [7]. For the particularly interesting
case k = 1, the derivative becomes ∂dil/∂λkm, where āl is the closest exemplar.

Dropping alignment paths with small contribution: In the limit β → ∞, con-
tributions restrict to the best alignment path, hence derivatives ∂d∗(ā, b̄)/∂λkm

for all λkm can be computed in time O(|ā| + |b̄|) based on the alignment ma-
trix. In general, derivatives are weighted sums corresponding to alignments of
the symbols m and l at some position (I, J) of the matrix. Weighting takes
into account all possible paths which include this pair according to the path
eligibility measured by softmin′(Ai) for actions Ai on the path; the worst case
complexity is O(|ā| · |b̄| · |Σ|2) using backtracing in the alignment matrix. We
propose an approximation based on the observation that a small softmin′(Ai)
leads to a small weight of paths including Ai. Hence, we store the 3 terms A1,
A2, A3 together with the distances softmin(A1, A2, A3) in the matrix, and we
cut all values softmin′(Ai) < θ for fixed θ ≥ 0. Backtracing depends on the
nonzero values only, so that a speed-up to linear complexity is possible in the
best case.

4 Experiments

We investigate the performance characteristics of RGLVQ using a fixed scoring
matrix λ in comparison to adaptive scores λ based on the proposed approx-
imations. First, we discuss the influence of the ‘crispness’ parameter β, and
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Figure 2: The figures show how the crispness β affects the adaptation of λ and
convergence of RGLVQ training. For different β, the mean test accuracy over
all cross-validation runs is given in every learning epoch. The dashed black line
represents RGLVQ training without adapting λ and serves as a baseline.

thereafter, the applicability and efficiency regarding real-world classification sce-
narios.

4.1 Artificial data
Replacement data: In this data set, all strings have 12 symbols randomly
generated from the alphabet Σ = {A,B,C,D} according to the regular expres-
sions: (A|B)5 (A|B) (C|D) (C|D)5 for the first class, and (A|B)5 (C|D) (A|B) (C|D)5

for the second. Hence, replacements of A or B by C or D are discriminative,
while replacements A with B, and C with D are not. After the training of λ, we
expect high costs for discriminative replacements, while other replacement costs
are close to zero. Also, we expect positive gap costs, since gaps could otherwise
circumvent the alignment of the discriminative middle parts.

Gap data: The second data set focuses on gap scoring. Strings in the first
class are random sequences āi ∈ Σ10 of length 10, whereas strings āl ∈ Σ12

in the second class are longer by 2 symbols. Therefore, replacements of letters
are not discriminative, while the introduction of any gaps discriminates classes.
Thus, gap costs should be high, while any symbol replacements should cost less.

Evaluation: For each data set, we created N = 100 sequences and evaluated
the average classifier performance in a 5-fold cross-validation with 5 repeats.
RGLVQ was trained using one prototype per class for 10 epochs. The learning
rate for the adaptation of λkm was set to η = 1/N for replacement as well as gap
scores. As initialization, we use a standard choice of λkm = 1/|Σ| ∀ (k,m) ∈ (Σ∪
{−})2, k 6= m, and add small random noise to break ties in the initial alignments.
All self-replacement scores remain fixed λkk = 0. During the adaptation, small
or negative values λkm < ǫ = 0.005 are reset to ǫ in order to keep D non-
negative.

The experimental results in Fig. 2 show the increased accuracy when adapt-
ing λ, e.g. for β = 5 a test accuracy of 100% (with 0 deviation) was achieved
after the 4th epoch. Respectively, the adapted λ represent ideal scoring matrices
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for both data sets, which exactly fulfill our previously described expectations, see
Fig. 1. In contrast, training RGLVQ with a fixed standard scoring λ remained
close to a random guess throughout the learning epochs, see the baseline in
Fig. 2.

We further evaluated how the ‘crispness’ parameter β influences the classifier
and the training progress. In Fig. 2, we can see how a lower crispness (e.g.
for β = 2) generally slows down the adaptation, while higher values seem to
facilitate a faster convergence, sometimes at the expense of robustness (see β =
80 in Fig. 2b). Generally, we can observe that β directly affects the convergence
characteristics, with an optimal value lying in a medium range.

4.2 Applicability and efficiency for real-world data sets
Chromosomes data: The sequences in this set represent band patterns from
the Copenhagen Chromosomes database [11]. Every sequence encodes the dif-
ferential succession of density levels observed in gray-scale images of a human
chromosome. Since 7 levels of density are distinguished, a 13-letter alphabet
Σ = {f, . . . , a,=,A, . . . ,F} represents a difference coding of successive positions,
where upper and lower case letters mark positive and negative changes respec-
tively, and “=” means no change1. From the database, we use a common bench-
mark set for binary classification, containing class 4 and 5, with 200 sequences
each (N =400). To handle the full 22-class data set, a local scoring matrix λj

for every prototype ~wj would be necessary, which is ongoing work, see Sec. 5.
The initial setup of λ was analog to the previous experiment, and one proto-

type per class was trained in a 5-fold cross-validation with 5 repeats. Crispness
β = 35 was chosen, and ηRep = 0.6 · (1/N) was set for learning replacement costs
λkm and ηGap = 0.4 · (1/N) for gaps λk−. The results in Fig. 3 show an im-
provement of the average test accuracy by 3% after adaptation of λ. The ratio
of mean intra-class distance to mean inter-class distance dropped from 0.94 to
0.91 in the adapted metric. Interestingly, λ shows a semantically meaningful
pattern, with rather low values in the 1st and 2nd off-diagonals, which resembles
the fact that density differences on neighboring scales are exchangeable within
classes. (Note, that symbols f,F did not occur in the data and were thus not
considered.)

1For details, see http://algoval.essex.ac.uk/data/sequence/copchrom/

Table 1: Runtimes (in minutes) to calculate the alignment derivative for all
pairs of random strings āi ∈ ΣL, i ∈ {1 . . . 10}, using different thresholds θ and
β=10.

Sequence length L 100 150 200 250
Runtime (θ = 0) 0.12 0.41 1.46 7.10
Runtime (θ = 0.15) 0.07 0.22 0.53 1.64
Runtime (θ = 0.2) 0.03 0.11 0.23 0.45
Runtime (θ = 0.25) 0.02 0.06 0.12 0.22

http://algoval.essex.ac.uk/data/sequence/copchrom/
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Figure 3: Results for the Chromosomes data set, where the (semantically sound)
adaptation of λ (right) yields an improvement of 3% in test accuracy (left).

Protein data: The sequences in this set are taken from a subset of the
SwissProt database (release 37), which originally consists of 10,988 protein se-
quences in 32 classes. This subset was previously used in the context of RGLVQ
classification, see [8]. For efficient testing of binary classification, we restrict here
to the two classes with the lowest mean sequence lengths, using 617 sequences in
total (class 4FE4S FERREDOXIN with 289 sequences, and ADH SHORT with 323). RGLVQ
training with 3 prototypes per class and distances based on the fixed standard scoring
λ resulted in a test accuracy of 92%. Although the adaptation of λ lead to a slightly
decreased 90% accuracy, it also produced a rather sparse scoring model: many values
in λ are close to ǫ and only a smaller portion of the parameters influence the align-
ment with significant positive costs, namely

∣

∣{(k,m) |λkm > ǫ + 0.01}
∣

∣ = 488 out of

650 =
∣

∣(Σ∪{−})2
∣

∣ possible pairs. Looking at low-dimensional embeddings of the stan-
dard vs. the adapted distances (embedded by the t-SNE technique [19], see Fig. 4), we
can observe that the main clusters of each class become more clearly distinguished by
the adaptation. This is substantiated by the fact that the ratio of mean intra-class dis-
tance to mean inter-class distance decreases from 1.02 to 0.88. A detailed investigation
about the semantic value of the sparse scoring model and increased class-separation is
ongoing work.

Approximated alignment derivative for computational speedup: Since
the calculation speed of derivatives ∂d∗(ā, b̄)/∂λkm severely affects the overall runtime,
we empirically evaluate the speedup by the approximation proposed in the end of
Section 3. The threshold θ determines that values softmin′(Ai) < θ are ignored in
the backtracing of alignment paths. Since the impact of θ depends on the alphabet
size and sequence length, it should be tuned according to good classification results
for the given data set. Typical values are θ ∈ (0.01, 0.2). As a simple test scenario,
we created several sets of random sequences, each consisting of 10 sequences āi ∈ ΣL

with Σ = {A,B,C,D}, for different choices of length L. For different thresholds θ, we
tracked the runtime of calculating alignment derivatives for all 100 sequence pairs on
a standard laptop computer with an Intel Core i7 processor (4 cores, and calculations
done in parallel). The results in Tab. 1 clearly show how increasing θ drastically
reduces the computational effort, especially for longer sequences. At the same time,
approximation to a certain extent does not reduce classifier performance: average test
accuracy on the Chromosomes data remained at 97% for θ = 0.02, decreasing the
mean runtime by 7%.
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5 Discussion

We presented a technique to integrate the supervised adaptation of metric parameters
(in this case the scoring pattern for sequence alignments) into a LVQ-based classifier
framework. Specifically, we utilized RGLVQ as an overarching learning regime, which
is able to process (dis)similarity data [7]. The goal is to facilitate class discrimination
in the adapted dissimilarities, while the training of prototypes yields a sparse classi-
fication model for the data. Unlike in [9], we do not assume differentiability of the
dissimilarity measure with respect to the data structures itself, but differentiability
with respect to the metric parameters only. Therefore, our approach could serve as
a generic foundation for metric adaptation schemes using dissimilarity measures for
discrete structures such as sequences or, as a generalization, trees or graph structures.
In addition to an improved class separation in adapted distances, the learned scoring
could highlight the importance of structural replacement operations, and thus give
further insight into the classification model. In the experiments, we demonstrated the
viability of our method, and evaluated the influence of the crispness β, along with the
computational speedup by an approximation technique. The adaptation of λ revealed
semantically interesting symbolic scoring patterns, a more detailed analysis being the
subject of future work. Since one parameter set λ affects the global metric in the
data space, it could be beneficial to use class-specific scoring matrices λj , e.g. for ev-
ery LVQ prototype, similar to local metric learning for vectorial data [16]. In terms
of efficiency, a current limitation is the inherent dependency of RLVQ on the entire
dissimilarity matrix D, which changes entirely if λ is adapted. Therefore, one could
refer to low-rank techniques to approximate D based on a small number of landmark
sequences.
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