Skip to main content

Bio-mimetic Path Integration Using a Self Organizing Population of Grid Cells

  • Conference paper
Artificial Neural Networks and Machine Learning – ICANN 2014 (ICANN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8681))

Included in the following conference series:

Abstract

Grid cells in the dorsocaudal medial entorhinal cortex (dMEC) of the rat provide a metric representation of the animal’s local environment. The collective firing patterns in a network of grid cells forms a triangular mesh that accurately tracks the location of the animal. The activity of a grid cell network, similar to head direction cells, displays path integration characteristics. Classical robotics use path integrators in the form of inertial navigation systems to track spatial information of an agent as well. In this paper, we describe an implementation of a network of grid cells as a dead reckoning system for the PR2 robot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barshan, B., Durrant-Whyte, H.F.: Inertial navigation systems for mobile robots. IEEE Transactions on Robotics and Automation 11(3), 328–342 (1995)

    Article  Google Scholar 

  2. Derdikman, D., Moser, E.I.: A manifold of spatial maps in the brain. Trends in Cognitive Sciences 14(12), 561–569 (2010)

    Article  Google Scholar 

  3. Gerstner, W., Kistler, W.M.: Mathematical formulations of hebbian learning. Biological Cybernetics 87(5-6), 404–415 (2002)

    Article  MATH  Google Scholar 

  4. Gerstner, W., Kistler, W.M.: Spiking neuron models: Single neurons, populations, plasticity. Cambridge University Press (2002)

    Google Scholar 

  5. Giocomo, L.M., Moser, M.B., Moser, E.I.: Computational models of grid cells. Neuron 71(4), 589–603 (2011)

    Article  Google Scholar 

  6. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

    Article  Google Scholar 

  7. Kyriacou, T.: Using an evolutionary algorithm to determine the parameters of a biologically inspired model of head direction cells. Journal of Computational Neuroscience 32(2), 281–295 (2012)

    Article  Google Scholar 

  8. McNaughton, B.L., Battaglia, F.P., Jensen, O., Moser, E.I., Moser, M.B.: Path integration and the neural basis of the ‘cognitive map’. Nature Reviews Neuroscience 7(8), 663–678 (2006)

    Article  Google Scholar 

  9. Muller, R.U., Ranck, J.B., Taube, J.S.: Head direction cells: properties and functional significance. Current Opinion in Neurobiology 6(2), 196–206 (1996)

    Article  Google Scholar 

  10. Muller, R.U., Stead, M., Pach, J.: The hippocampus as a cognitive graph. The Journal of General Physiology 107(6), 663–694 (1996)

    Article  Google Scholar 

  11. Nadel, L., MacDonald, L.: Hippocampus: Cognitive map or working memory? Behavioral and Neural Biology 29(3), 405–409 (1980)

    Article  Google Scholar 

  12. O’Keefe, J.: Place units in the hippocampus of the freely moving rat. Experimental Neurology 51(1), 78–109 (1976)

    Article  Google Scholar 

  13. O’Keefe, J.: The hippocampal cognitive map and navigational strategies (1991)

    Google Scholar 

  14. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: Ros: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3 (2009)

    Google Scholar 

  15. Ranck Jr., J.: Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats. In: Society for Neuroscience Abstracts, vol. 10 (1984)

    Google Scholar 

  16. Stringer, S., Rolls, E., Trappenberg, T., De Araujo, I.: Self-organizing continuous attractor networks and path integration: two-dimensional models of place cells. Network: Computation in Neural Systems 13(4), 429–446 (2002)

    Article  Google Scholar 

  17. Stringer, S., Trappenberg, T., Rolls, E., Araujo, I.E.T.: Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells. Network: Computation in Neural Systems 13(2), 217–242 (2002)

    Article  MATH  Google Scholar 

  18. Trullier, O., Meyer, J.A.: Animat navigation using a cognitive graph. Biological Cybernetics 83(3), 271–285 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sinha, A., Wang, J.J. (2014). Bio-mimetic Path Integration Using a Self Organizing Population of Grid Cells. In: Wermter, S., et al. Artificial Neural Networks and Machine Learning – ICANN 2014. ICANN 2014. Lecture Notes in Computer Science, vol 8681. Springer, Cham. https://doi.org/10.1007/978-3-319-11179-7_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11179-7_85

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11178-0

  • Online ISBN: 978-3-319-11179-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics