Abstract
Time plays a key role in describing stories and cases. In the last decades, great efforts have been done to develop Case-Based Reasoning (CBR) systems that can cope with the temporal dimension. Despite this kind of system finds it difficult to maintain their case-base, little attention has been paid to maintain temporal case-bases. Case-Base Maintenance (CBM) algorithms are useful tools to build efficient and reliable CBR systems. In this work, we propose the extension of different CBM approaches to deal with this problem. Five temporal CBM algorithms are proposed (t-CNN, t-RENN, t-DROP1, t-ICF and t-RC-FP). These algorithms make the maintenance of case-bases possible when cases are temporal event sequences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brighton, H., Mellish, C.: On the consistency of information filters for lazy learning algorithms. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 283–288. Springer, Heidelberg (1999)
Cordier, A., Lefevre, M., Champin, P.A., Georgeon, O.L., Mille, A.: Trace-based reasoning - modeling interaction traces for reasoning on experiences. In: FLAIRS Conference (2013)
Gundersen, O.E., Sørmo, F., Aamodt, A., Skalle, P.: A real-time decision support system for high cost oil-well drilling operations. AI Magazine 34(1), 21–32 (2013)
Gundersen, O.E.: Toward measuring the similarity of complex event sequences in real-time. In: Díaz Agudo, B., Watson, I. (eds.) ICCBR 2012. LNCS, vol. 7466, pp. 107–121. Springer, Heidelberg (2012)
Hart, P.: Condensed nearest neighbor rule. IEEE Transactions on Information Theory 14(3), 515+ (1968)
Huang, Z., Juarez, J.M., Duan, H., Li, H.: Length of stay prediction for clinical treatment process using temporal similarity. Expert Systems with Applications 40(16), 6330–6339 (2013)
Juarez, J.M., Guil, F., Palma, J., Marin, R.: Temporal similarity by measuring possibilistic uncertainty in CBR. Fuzzy Sets and Systems 160(2), 214–230 (2009)
Leake, D., Wilson, D.: Categorizing case-base maintenance: Dimensions and directions. In: Smyth, B., Cunningham, P. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, pp. 196–207. Springer, Heidelberg (1998)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Physics Doklady 10, 707–710 (1966)
Lupiani, E., Juarez, J.M., Jimenez, F., Palma, J.: Evaluating case selection algorithms for analogical reasoning systems. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 344–353. Springer, Heidelberg (2011)
Mannila, H., Moen, P.: Similarity between event types in sequences. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 271–280. Springer, Heidelberg (1999)
McKenna, E., Smyth, B.: Competence-guided case-base editing techniques. In: Blanzieri, E., Portinale, L. (eds.) EWCBR 2000. LNCS (LNAI), vol. 1898, pp. 186–197. Springer, Heidelberg (2000)
Moen, P.: Attribute, Event Sequence, and Event Type Similarity Notions for Data Mining. Ph.D. thesis, University of Helsinki (2000)
Montani, S., Bottrighi, A., Leonardi, G., Portinale, L., Terenziani, P.: Multi-level abstractions and multi-dimensional retrieval of cases with time series features. In: McGinty, L., Wilson, D.C. (eds.) ICCBR 2009. LNCS, vol. 5650, pp. 225–239. Springer, Heidelberg (2009)
Montani, S., Leonardi, G.: Retrieval and clustering for supporting business process adjustment and analysis. Information Systems 40, 128–141 (2014)
Pan, R., Yang, Q., Pan, S.J.: Mining competent case bases for case-based reasoning. Artificial Intelligence 171(16-17), 1039–1068 (2007)
Roddick, J., Spiliopoulou, M.: A survey of temporal knowledge discovery paradigms and methods. IEEE Transactions on Knowledge and Data Engineering 14(4), 750–767 (2002)
Smyth, B., McKenna, E.: Competence models and the maintenance problem. Computational Intelligence 17(2), 235–249 (2001)
Valipour Shokouhi, S., Skalle, P., Aamodt, A., Sormo, F., et al.: Integration of real-time data and past experiences for reducing operational problems. In: International Petroleum Technology Conference (2009)
Wilson, D.R., Martinez, T.R.: Instance pruning techniques. In: Machine Learning: Proceedings of the Fourteenth International Conference (ICML 1997), pp. 404–411. Morgan Kaufmann (1997)
Wilson, D.R.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on Systems Man and Cybernetics SMC 2(3), 408–421 (1972)
Wilson, D.R., Martinez, T.R.: Reduction techniques for instance-based learning algorithms. Machine Learning 38(3), 257–286 (2000)
Wongsuphasawat, K., Shneiderman, B.: Finding comparable temporal categorical records: A similarity measure with an interactive visualization. In: IEEE Symposium on Visual Analytics Science and Technology, VAST 2009 (2009)
Wongsuphasawat, K., Plaisant, C., Taieb-Maimon, M., Shneiderman, B.: Querying event sequences by exact match or similarity search: Design and empirical evaluation. Interact. Comput. 24, 55–68 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Lupiani, E., Juarez, J.M., Palma, J. (2014). A Proposal of Temporal Case-Base Maintenance Algorithms. In: Lamontagne, L., Plaza, E. (eds) Case-Based Reasoning Research and Development. ICCBR 2014. Lecture Notes in Computer Science(), vol 8765. Springer, Cham. https://doi.org/10.1007/978-3-319-11209-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-11209-1_19
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11208-4
Online ISBN: 978-3-319-11209-1
eBook Packages: Computer ScienceComputer Science (R0)