Abstract
Executing complex plans for coordinating the behaviors of multiple heterogeneous agents often requires setting several parameters. For example, we are developing a decision aid for deploying a set of autonomous vehicles to perform situation assessment in a disaster relief operation. Our system, the Situated Decision Process (SDP), uses parameterized plans to coordinate these vehicles. However, no model exists for setting the values of these parameters. We describe a case-based reasoning solution for this problem and report on its utility in simulated scenarios, given a case library that represents only a small percentage of the problem space. We found that our agents, when executing plans generated using our case-based algorithm on problems with high uncertainty, performed significantly better than when executing plans using baseline approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abi-Zeid, I., Yang, Q., Lamontagne, L.: Is CBR applicable to the coordination of search and rescue operations? A feasibility study. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 358–371. Springer, Heidelberg (1999)
Cobb, C., Zhang, Y., Agogino, A.: Mems design synthesis: Integrating case-based reasoning and multi-objective genetic algorithms. In: Proceedings of SPIE, vol. 6414 (2006)
Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Case-based goal-driven coordination of multiple learning agents. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 164–178. Springer, Heidelberg (2013)
Jalali, V., Leake, D.: An ensemble approach to instance-based regression using stretched neighborhoods. In: Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference (2013)
Jin, X., Zhu, X.: Process parameter setting using case-based and fuzzy reasoning for injection molding. In: Proceedings of the Third World Congress on Intelligent Control and Automation, pp. 335–340. IEEE (2000)
Karol, A., Nebel, B., Stanton, C., Williams, M.-A.: Case based game play in the roboCup four-legged league: Part I The theoretical model. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 739–747. Springer, Heidelberg (2004)
Likhachev, M., Kaess, M., Arkin, R.: Learning behavioral parameterization using spatio-temporal case-based reasoning. In: Proceedings of the International Conference on Robotics and Automation, vol. 2, pp. 1282–1289. IEEE (2002)
Liu, S.-Y., Hedrick, J.: The application of domain of danger in autonomous agent team and its effect on exploration efficiency. In: Proceedings of the 2011 IEEE American Control Conference, San Francisco, CA, pp. 4111–4116 (2011)
Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent simulation environment. Simulation 81(7), 517–527 (2005)
Martinson, E., Apker, T., Bugajska, M.: Optimizing a reconfigurable robotic microphone array. In: International Conference on Intelligent Robots and Systems, pp. 125–130. IEEE (2011)
Montani, S.: Exploring new roles for case-based reasoning in heterogeneous ai systems for medical decision support. Applied Intelligence 28, 275–285 (2008)
Muñoz-Avila, H., Aha, D.W., Breslow, L., Nau, D.: HICAP: An interactive case-based planning architecture and its application to noncombatant evacuation operations. In: Proceedings of the Ninth National Conference on Innovative Applications of Artificial Intelligence, pp. 879–885. AAAI Press (1999)
Muñoz-Avila, H., Aha, D.W., Nau, D., Weber, R., Breslow, L., Yaman, F.: SiN: Integrating case-based reasoning with task decomposition. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 999–1004. Morgan Kaufmann (2001)
O’Connor, C.: Foreign humanitarian assistance and disaster-relief operations: Lessons learned and best practices. Naval War College Review 65 (2012)
Pavón, R., Díaz, F., Laza, R., Luzón, V.: Automatic parameter tuning with a Bayesian case-based reasoning system: A case study. Expert Systems with Applications 36, 3407–3420 (2009)
Price, C.J., Pegler, I.S.: Deciding parameter values with case-based reasoning. In: Watson, I.D. (ed.) UK CBR 1995. LNCS, vol. 1020, pp. 119–133. Springer, Heidelberg (1995)
Roberts, M., Vattam, S., Alford, R., Auslander, B., Karneeb, J., Molineaux, M., Apker, T., Wilson, M., McMahon, J., Aha, D.W.: Iterative goal refinement for robotics. In: ICAPS Workshop on Planning and Robotics (2014)
Ros, R., Arcos, J., Lopez de Mantaras, R., Veloso, M.: A case-based approach for coordinated action selection in robot soccer. Artificial Intelligence 173, 1014–1039 (2009)
Weber, R., Proctor, J.M., Waldstein, I., Kriete, A.: CBR for modeling complex systems. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 625–639. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Auslander, B., Apker, T., Aha, D.W. (2014). Case-Based Parameter Selection for Plans: Coordinating Autonomous Vehicle Teams. In: Lamontagne, L., Plaza, E. (eds) Case-Based Reasoning Research and Development. ICCBR 2014. Lecture Notes in Computer Science(), vol 8765. Springer, Cham. https://doi.org/10.1007/978-3-319-11209-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-11209-1_4
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11208-4
Online ISBN: 978-3-319-11209-1
eBook Packages: Computer ScienceComputer Science (R0)