Skip to main content

Case-Based Parameter Selection for Plans: Coordinating Autonomous Vehicle Teams

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8765))

Included in the following conference series:

  • 1243 Accesses

Abstract

Executing complex plans for coordinating the behaviors of multiple heterogeneous agents often requires setting several parameters. For example, we are developing a decision aid for deploying a set of autonomous vehicles to perform situation assessment in a disaster relief operation. Our system, the Situated Decision Process (SDP), uses parameterized plans to coordinate these vehicles. However, no model exists for setting the values of these parameters. We describe a case-based reasoning solution for this problem and report on its utility in simulated scenarios, given a case library that represents only a small percentage of the problem space. We found that our agents, when executing plans generated using our case-based algorithm on problems with high uncertainty, performed significantly better than when executing plans using baseline approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abi-Zeid, I., Yang, Q., Lamontagne, L.: Is CBR applicable to the coordination of search and rescue operations? A feasibility study. In: Althoff, K.-D., Bergmann, R., Branting, L.K. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 358–371. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Cobb, C., Zhang, Y., Agogino, A.: Mems design synthesis: Integrating case-based reasoning and multi-objective genetic algorithms. In: Proceedings of SPIE, vol. 6414 (2006)

    Google Scholar 

  3. Jaidee, U., Muñoz-Avila, H., Aha, D.W.: Case-based goal-driven coordination of multiple learning agents. In: Delany, S.J., Ontañón, S. (eds.) ICCBR 2013. LNCS, vol. 7969, pp. 164–178. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Jalali, V., Leake, D.: An ensemble approach to instance-based regression using stretched neighborhoods. In: Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference (2013)

    Google Scholar 

  5. Jin, X., Zhu, X.: Process parameter setting using case-based and fuzzy reasoning for injection molding. In: Proceedings of the Third World Congress on Intelligent Control and Automation, pp. 335–340. IEEE (2000)

    Google Scholar 

  6. Karol, A., Nebel, B., Stanton, C., Williams, M.-A.: Case based game play in the roboCup four-legged league: Part I The theoretical model. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 739–747. Springer, Heidelberg (2004)

    Google Scholar 

  7. Likhachev, M., Kaess, M., Arkin, R.: Learning behavioral parameterization using spatio-temporal case-based reasoning. In: Proceedings of the International Conference on Robotics and Automation, vol. 2, pp. 1282–1289. IEEE (2002)

    Google Scholar 

  8. Liu, S.-Y., Hedrick, J.: The application of domain of danger in autonomous agent team and its effect on exploration efficiency. In: Proceedings of the 2011 IEEE American Control Conference, San Francisco, CA, pp. 4111–4116 (2011)

    Google Scholar 

  9. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: Mason: A multiagent simulation environment. Simulation 81(7), 517–527 (2005)

    Article  Google Scholar 

  10. Martinson, E., Apker, T., Bugajska, M.: Optimizing a reconfigurable robotic microphone array. In: International Conference on Intelligent Robots and Systems, pp. 125–130. IEEE (2011)

    Google Scholar 

  11. Montani, S.: Exploring new roles for case-based reasoning in heterogeneous ai systems for medical decision support. Applied Intelligence 28, 275–285 (2008)

    Article  Google Scholar 

  12. Muñoz-Avila, H., Aha, D.W., Breslow, L., Nau, D.: HICAP: An interactive case-based planning architecture and its application to noncombatant evacuation operations. In: Proceedings of the Ninth National Conference on Innovative Applications of Artificial Intelligence, pp. 879–885. AAAI Press (1999)

    Google Scholar 

  13. Muñoz-Avila, H., Aha, D.W., Nau, D., Weber, R., Breslow, L., Yaman, F.: SiN: Integrating case-based reasoning with task decomposition. In: Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, pp. 999–1004. Morgan Kaufmann (2001)

    Google Scholar 

  14. O’Connor, C.: Foreign humanitarian assistance and disaster-relief operations: Lessons learned and best practices. Naval War College Review 65 (2012)

    Google Scholar 

  15. Pavón, R., Díaz, F., Laza, R., Luzón, V.: Automatic parameter tuning with a Bayesian case-based reasoning system: A case study. Expert Systems with Applications 36, 3407–3420 (2009)

    Article  Google Scholar 

  16. Price, C.J., Pegler, I.S.: Deciding parameter values with case-based reasoning. In: Watson, I.D. (ed.) UK CBR 1995. LNCS, vol. 1020, pp. 119–133. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  17. Roberts, M., Vattam, S., Alford, R., Auslander, B., Karneeb, J., Molineaux, M., Apker, T., Wilson, M., McMahon, J., Aha, D.W.: Iterative goal refinement for robotics. In: ICAPS Workshop on Planning and Robotics (2014)

    Google Scholar 

  18. Ros, R., Arcos, J., Lopez de Mantaras, R., Veloso, M.: A case-based approach for coordinated action selection in robot soccer. Artificial Intelligence 173, 1014–1039 (2009)

    Article  Google Scholar 

  19. Weber, R., Proctor, J.M., Waldstein, I., Kriete, A.: CBR for modeling complex systems. In: Muñoz-Ávila, H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 625–639. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Auslander, B., Apker, T., Aha, D.W. (2014). Case-Based Parameter Selection for Plans: Coordinating Autonomous Vehicle Teams. In: Lamontagne, L., Plaza, E. (eds) Case-Based Reasoning Research and Development. ICCBR 2014. Lecture Notes in Computer Science(), vol 8765. Springer, Cham. https://doi.org/10.1007/978-3-319-11209-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11209-1_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11208-4

  • Online ISBN: 978-3-319-11209-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics