Skip to main content

Algorithm for Adapting Cases Represented in a Tractable Description Logic

  • Conference paper
Case-Based Reasoning Research and Development (ICCBR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8765))

Included in the following conference series:

Abstract

Case-based reasoning (CBR) based on description logics (DLs) has gained a lot of attention lately. Adaptation is a basic task in CBR that can be modeled as a knowledge base revision problem which has been solved in propositional logic. However, in DLs, adaptation is still a challenge problem since existing revision operators only work well for DLs of the DL-Lite family. It is difficult to design revision algorithms that are syntax-independent and fine-grained. In this paper, we propose a new method for adaptation based on the tractable DL \(\mathcal{EL_{\bot}}\). Following the idea of adaptation as revision, we firstly extend the logical basis for describing cases from propositional logic to DL and present a formalism for adaptation based on \(\mathcal{EL_{\bot}}\). Then we show that existing revision operators and algorithms in DLs can not be used for this formalism. Finally we present our adaptation algorithm. Our algorithm is syntax-independent and fine-grained, and satisfies the requirements on revision operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530 (1985)

    Article  MATH  Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  3. Baader, F., Brandt, S., Lutz, C.: Pushing the \(\mathcal{EL}\) envelope. In: Proc. of the 19th International Joint Conference on Artificial Intelligence, pp. 364–369. Morgan Kaufmann (2005)

    Google Scholar 

  4. Calvanese, D., Kharlamov, E., Nutt, W., Zheleznyakov, D.: Evolution of DL-lite knowledge bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 112–128. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Chang, L., Sattler, U., Gu, T.L.: Algorithm for adapting cases represented in a tractable description logic. arXiv: 1405.4180 (2014)

    Google Scholar 

  6. Chang, L., Sattler, U., Gu, T.L.: An ABox revision algorithm for the description logic \(\mathcal{EL_{\bot}}\). In: Proc. of the 27th International Workshop on Description Logics (2014)

    Google Scholar 

  7. Cojan, J., Lieber, J.: An algorithm for adapting cases represented in an expressive description logic. In: Bichindaritz, I., Montani, S. (eds.) ICCBR 2010. LNCS, vol. 6176, pp. 51–65. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Consortium, T.G.O.: Gene Ontology: Tool for the unification of biology. Nature Genetics 25, 25–29 (2000)

    Article  Google Scholar 

  9. d’Aquin, M., Lieber, J., Napoli, A.: Decentralized case-based reasoning for the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 142–155. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Gómez-Albarrán, M., González Calero, P.A., Díaz-Agudo, B., Fernández-Conde, C.J.: Modelling the CBR life cycle using description logics. In: Althoff, K.-D., Bergmann, R., Karl Branting, L. (eds.) ICCBR 1999. LNCS (LNAI), vol. 1650, pp. 147–161. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  11. Horrocks, I., Patel-Schneider, P.F., Harmelen, F.V.: From SHIQ and RDF to OWL: the making of a web ontology language. J. Web Semantics 1(1), 7–26 (2003)

    Article  Google Scholar 

  12. Horrocks, I., Sattler, U.: A tableau decision procedure for \(\mathcal{SHOIQ}\). J. Autom. Reasoning 39(3), 249–276 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Katsuno, H., Mendelzon, A.O.: Propositional knowledge base revision and minimal change. Artificial Intelligence 52(3), 263–294 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kharlamov, E., Zheleznyakov, D., Calvanese, D.: Capturing model-based ontology evolution at the instance level: The case of DL-Lite. J. Comput. Syst. Sci. 79(6), 835–872 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lehmann, K., Turhan, A.-Y.: A Framework for Semantic-Based Similarity Measures for \(\mathcal{ELH}\)-Concepts. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012. LNCS, vol. 7519, pp. 307–319. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Lenzerini, M., Savo, D.F.: On the evolution of the instance level of DL-Lite knowledge bases. In: Proc. of the 24th International Workshop on Description Logics (2011)

    Google Scholar 

  17. Lieber, J.: Application of the revision theory to adaptation in case-based reasoning: the conservative adaptation. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 239–253. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Sánchez-Ruiz, A.A., Ontañón, S., González-Calero, P.A., Plaza, E.: Measuring similarity in description logics using refinement operators. In: Ram, A., Wiratunga, N. (eds.) ICCBR 2011. LNCS, vol. 6880, pp. 289–303. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Spackman, K.: Managing clinical terminology hierarchies using algorithmic calculation of subsumption: Experience with SNOMED-RT. J. American Medical Informatics Assoc., Fall Symposium Special Issue (2000)

    Google Scholar 

  20. Wiener, C.H., Katz, Y., Parsia, B.: Belief base revision for expressive description logics. In: Proc. of the 4th International Workshop on OWL: Experiences and Directions (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Chang, L., Sattler, U., Gu, T. (2014). Algorithm for Adapting Cases Represented in a Tractable Description Logic. In: Lamontagne, L., Plaza, E. (eds) Case-Based Reasoning Research and Development. ICCBR 2014. Lecture Notes in Computer Science(), vol 8765. Springer, Cham. https://doi.org/10.1007/978-3-319-11209-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11209-1_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11208-4

  • Online ISBN: 978-3-319-11209-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics