Abstract
We examined the manner in which people integrated visual cues and self-motion cues during spatial navigation when the two cues varied in reliability independently. Results showed that when responses were pooled across reliability levels of the manipulated cue, people integrated cues optimally or nearly optimally in a Bayesian manner. However, when responses were analyzed within reliability levels, navigation behavior often deviated from Bayesian optimal integration. These results suggest that when experiencing spatial cues changing in reliability, navigators combine cues in a way consistent with Bayesian integration theory overall, but at the cost of being non-optimal at the individual reliability levels.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cheng, K., Newcombe, N.S.: Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin & Review 12(1), 1–23 (2005)
Lew, A.R.: Looking beyond the boundaries: Time to put landmarks back on the cognitive map? Psychol. Bull. 137(3), 484–507 (2011), doi:10.1037/a0022315
Twyman, A.D., Newcombe, N.S.: Five reasons to doubt the existence of a geometric module. Cogn. Sci. 34(7), 1315–1356 (2010), doi:10.1111/j.1551-6709.2009.01081.x
Save, E., Poucet, B.: Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behavioural Brain Research 109(2), 195–206 (2000), doi:10.1016/s0166-4328(99)00173-4
Chamizo, V.D., Manteiga, R.D., Rodrigo, T., Mackintosh, N.J.: Competition between landmarks in spatial learning: The role of proximity to the goal. Behav. Processes 71(1), 59–65 (2006), doi:10.1016/j.beproc.2005.11.003
Goodyear, A.J., Kamil, A.C.: Clark’s nutcrackers (Nucifraga columbiana) and the effects of goal–landmark distance on overshadowing. J. Comp. Psychol. 118(3), 258–264 (2004), doi:10.1037/0735-7036.118.3.258
Roberts, A.D., Pearce, J.M.: Blocking in the Morris swimming pool. J. Exp. Psychol. Anim. Behav. Process. 25(2), 225–235 (1999)
Spetch, M.L.: Overshadowing in landmark learning: touch-screen studies with pigeons and humans. J. Exp. Psychol. Anim. Behav. Process. 21(2), 166–181 (1995)
Wilson, P.N., Alexander, T.: Blocking of spatial learning between enclosure geometry and a local landmark. Journal of Experimental Psychology-Learning Memory and Cognition 34(6), 1369–1376 (2008), doi:10.1037/a0013011
Cheng, K.: A purely geometric module in the rat’s spatial representation. Cognition 23(2), 149–178 (1986)
Doeller, C.F., Burgess, N.: Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proc. Natl Acad. Sci. U S A 105(15), 5909–5914 (2008), doi:10.1073/pnas.0711433105
Kearns, M.J., Warren, W.H., Duchon, A.P., Tarr, M.J.: Path integration from optic flow and body senses in a homing task. Perception 31(3), 349–374 (2002), doi:10.1068/p3311
Kelly, J.W., McNamara, T.P., Bodenheimer, B., Carr, T.H., Rieser, J.J.: The shape of human navigation: How environmental geometry is used in maintenance of spatial orientation. Cognition 109(2), 281–286 (2008), doi:10.1016/j.cognition.2008.09.001
Nico, D., Israel, I., Berthoz, A.: Interaction of visual and idiothetic information in a path completion task. Experimental Brain Research 146(3), 379–382 (2002), doi:10.1007/s00221-002-1184-8
Chittka, L., Geiger, K.: Honeybee long-distance orientation in a controlled environment. Ethology 99(2), 117–126 (1995)
Cheng, K., Shettleworth, S.J., Huttenlocher, J., Rieser, J.J.: Bayesian integration of spatial information. Psychol. Bull. 133(4), 625–637 (2007), doi:10.1037/0033-2909.133.4.625
Ernst, M.O., Banks, M.S.: Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415(6870), 429–433 (2002), doi:10.1038/415429a
Nardini, M., Bedford, R., Mareschal, D.: Fusion of visual cues is not mandatory in children. Proc. Natl Acad. Sci. U S A 107(39), 17041–17046 (2010), doi:10.1073/pnas.1001699107
Parise, C.V., Spence, C., Ernst, M.O.: When correlation implies causation in multisensory integration. Current Biology 22(1), 46–49 (2012)
Nardini, M., Jones, P., Bedford, R., Braddick, O.: Development of cue integration in human navigation. Curr. Biol. 18(9), 689–693 (2008), doi:10.1016/j.cub.2008.04.021
Loomis, J.M., Klatzky, R.L., Golledge, R.G., Cicinelli, J.G., Pellegrino, J.W., Fry, P.A.: Nonvisual navigation by blind and sighted: assessment of path integration ability. Journal of Experimental Psychology: General 122(1), 73 (1993)
Cheng, K., Spetch, M.L.: Stimulus control in the use of landmarks by pigeons in a touch-screen task. J. Exp. Anal. Behav. 63(2), 187–201 (1995)
Kelly, J.W., McNamara, T.P., Bodenheimer, B., Carr, T.H., Rieser, J.J.: Individual differences in using geometric and featural cues to maintain spatial orientation: Cue quantity and cue ambiguity are more important than cue type. Psychon. Bull. Rev. 16(1), 176–181 (2009), doi:10.3758/PBR.16.1.176
Loomis, J.M., Klatzky, R.L., Golledge, R.G., Philbeck, J.W.: Human navigation by path integration. In: Wayfinding Behavior: Cognitive Mapping and Other Spatial Processes, pp. 125–151 (1999)
Rouder, J.N., Speckman, P.L., Sun, D., Morey, R.D., Iverson, G.: Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review 16(2), 225–237 (2009)
Chen, X.: Bayesian cue interaction in human spatial navigation: mathematical demonstration, simulations, and relationship between cue salience and cue reliability. Technical Report, Department of Psychology, Vanderbilt University (2014)
Zhao, M., Warren, W.H.: Path integration and visual landmarks: Optimal combination or multiple systems? In: Annual Meeting of Psychonomics Society, St. Louis, MO (November 2010)
Bruggeman, H., Zosh, W., Warren, W.H.: Optic flow drives human visuo-locomotor adaptation. Current Biology 17(23), 2035–2040 (2007)
Chamizo, V., Rodrigo, T., Peris, J., Grau, M.: The influence of landmark salience in a navigation task: An additive effect between its components. Journal of Experimental Psychology: Animal Behavior Processes 32(3), 339 (2006)
Gouteux, S., Thinus-Blanc, C., Vauclair, J.: Rhesus monkeys use geometric and nongeometric information during a reorientation task. Journal of Experimental Psychology: General 130(3), 505 (2001)
Learmonth, A.E., Nadel, L., Newcombe, N.S.: Children’s use of landmarks: Implications for modularity theory. Psychol. Sci. 13(4), 337–341 (2002)
Hillis, J.M., Ernst, M.O., Banks, M.S., Landy, M.S.: Combining sensory information: mandatory fusion within, but not between, senses. Science 298(5598), 1627–1630 (2002), doi:10.1126/science.1075396
Mou, W., Spetch, M.L.: Object location memory: Integration and competition between multiple context objects but not between observers’ body and context objects. Cognition 126(2), 181–197 (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, X., McNamara, T.P. (2014). Bayesian Cue Interaction in Human Spatial Navigation. In: Freksa, C., Nebel, B., Hegarty, M., Barkowsky, T. (eds) Spatial Cognition IX. Spatial Cognition 2014. Lecture Notes in Computer Science(), vol 8684. Springer, Cham. https://doi.org/10.1007/978-3-319-11215-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-11215-2_11
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11214-5
Online ISBN: 978-3-319-11215-2
eBook Packages: Computer ScienceComputer Science (R0)