Skip to main content

Moving Human Detection in Video Using Dynamic Visual Attention Model

  • Conference paper
Advances in Intelligent Informatics

Abstract

Visual Attention algorithms have been extensively used for object detection in images. However, the use of these algorithms for video analysis has been less explored. Many of the techniques proposed, though accurate and robust, still require a huge amount of time for processing large sized video data. Thus this paper introduces a fast and computationally inexpensive technique for detecting regions corresponding to moving humans in surveillance videos. It is based on the dynamic saliency model and is robust to noise and illumination variation. Results indicate successful extraction of moving human regions with minimum noise, and faster performance in comparison to other models. The model works best in sparsely crowded scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dick, A., Brooks, M.: Issues in Automated Visual Surveillance. In: Proceedings of International Conference on Digital Image Computing: Techniques and Application, pp. 195–204 (2003)

    Google Scholar 

  2. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis (1998)

    Google Scholar 

  3. Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. LNCS (LNAI), vol. 3899. Springer, Heidelberg (2006)

    Google Scholar 

  4. Amudha, J., Soman, K.P., Padmakar Reddy, S.: A Knowledge Driven Computational Visual Attention Model. International Journal of Computer Science Issues 8(3(1)) (2011)

    Google Scholar 

  5. Radha, D., Amudha, J., Ramyasree, P., Ravindran, R., Shalini, S.: Detection of Unauthorized Human Entity in Surveillance Video. International Journal of Engineering and Technology 5(3) (2013)

    Google Scholar 

  6. Amudha, J., Mathur, P.: Keyframe Identification using Visual Attention Model. In: International Conference on Recent Trends in Computer Science and Engineering, Chennai, pp. 55–55 (2012)

    Google Scholar 

  7. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Google Scholar 

  8. Guo, W., Xu, C., Ma, S., Xu, M.: Visual Attention Based Motion Object Detection and Trajectory Tracking. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.-Y., Kuo, C.-C.J., Lew, M.S. (eds.) PCM 2010, Part II. LNCS, vol. 6298, pp. 462–470. Springer, Heidelberg (2010)

    Google Scholar 

  9. Zhang, S., Stentiford, F.: A saliency based object tracking method. In: International Workshop on Content-Based Multimedia Indexing, pp. 512–517 (2008)

    Google Scholar 

  10. Riche, N., Mancas, M., Culibrk, D., Crnojevic, V., Gosselin, B., Dutoit, T.: Dynamic saliency models and human attention: a comparative study on videos. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 586–598. Springer, Heidelberg (2013)

    Google Scholar 

  11. Mancas, M., Mancas-Thillou, C., Gosselin, B., Macq, B.: A Rarity-Based Visual Attention Map - Application to Texture Description. In: IEEE International Conference on Image Processing, pp. 445–448 (2006)

    Google Scholar 

  12. Performance Evaluation and Tracking and Surveillance, PETS (2001), http://ftp.pets.rdg.ac.uk/PETS2001/DATASET1/

  13. Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  14. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly Detection in Crowded Scenes. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sanjay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Sanjay, G., Amudha, J., Jose, J.T. (2015). Moving Human Detection in Video Using Dynamic Visual Attention Model. In: El-Alfy, ES., Thampi, S., Takagi, H., Piramuthu, S., Hanne, T. (eds) Advances in Intelligent Informatics. Advances in Intelligent Systems and Computing, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-319-11218-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11218-3_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11217-6

  • Online ISBN: 978-3-319-11218-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics