Abstract
Noise identification, estimation and denoising are the important and essential stages in image processing techniques. In this paper, we proposed an automated system for noise identification and estimation technique by adopting the Artificial intelligence techniques such as Probabilistic Neural Network (PNN) and Fuzzy logic concepts. PNN concepts are used for identifying and classifying the images, which are affected by the different type of noises by extracting the statistical features of noises, PNN performance is evaluated for classification accuracies. Fuzzy logic concepts such as Fuzzy C-Means clustering techniques have been employed for estimating the noise affected to the image are compared with the other existing estimation techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, Y., Das, M.: An Automated Technique for Image Noise Identification Using a Simple Pattern Classification Approach, pp. 819–822. IEEE (2007)
Patra, P.K., Nayak, M., Nayak, S.K., Gobbak, N.K.: Probabilistic Neural Network for Pattern Classification. IEEE (2002)
Chen, T., Ma, K.K., Chen, L.H.: Tri-state median filter for image denoising. IEEE Transactions on Image Processing 8(12), 1834–1838 (1999)
Vozel, B., Chehdi, K., Klaine, L., Lukin, V.V., Abramov, S.K.: Noise Identification and Estimation of its Statistical Parameters by Using Unsupervised Variational Classification. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Proc. 2006, vol. 2, pp. 841–844 (2006)
Beaurepaire, L., Chehdi, K., Vozel, B.: Identification of the nature of noise and estimation of its statistical parameters by analysis of local histograms. In: Proceedings of ICASSP 1997, Munich, April 21-24 (1997)
Karibasappa, K.G., Karibasappa, K.: Identification and Removal of Impulsive noise using Hypergraph Model. International Journal on Computer Science and Engineering 02(08), 2666–2669 (2010)
Liu, X., Chen, Z.: Research on Noise Detection Based on Improved Gradient Function. In: International Symposium on Computer Science and Computational Technology (2008)
Olsen, S.I.: Estimation of noise in images An evaluation. Computer Vision Graphics Image Processing, Graphics Models 55(4), 319–323 (1993)
Bosco, A., Bruna, A., Messina, G., Spampinato, G.: Fast Method for Noise Level Estimation and Integrated Noise Reduction. IEEE Transaction on Consumer Electronics 51(3), 1028–1033 (2005)
Amer, A., Dubois, E.: Reliable and Fast structure-Oriented Video Noise Estimation. In: Proc. IEEE International Conference on Image Processing, Mountreal Quebec, Canada (September 2002)
Shin, D.H., Park, R.H., Yang, S., Jung, J.H.: Block Based Noise Estimation Using adaptive Gaussian Filtering. IEEE Transaction on Consumer Electronics 51(1) (February 2005)
Sijbers, J., den Dekker, A.J., Van Audekerke, J., Verhoye, M., Van Dyck, D.: Estimation of the noise in Magnitude MR images. Magnetic Resonance Imaging 16(1), 87–90 (1998)
Pyatykh, S., Hesser, J., Zheng, L.: Image Noise Level Estimation by Principal Component Analysis. IEEE Transactions on Image Processing 22(2), 687–699 (2012)
Muresan, D., Parks, T.: Adaptive principal components and image denoising. In: Proceedings of the International Conference on Image Processing, ICIP 2003, vol. 1, pp. I–101. IEEE (2003)
Foi, A.: Noise estimation and removal in mr imaging: The Variance Stabilization Approach. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE (2011)
Konstantiniders, K., Natarajan, B., Yovanof, G.S.: Noise Estimation and Filtering Using Block-Based Singular Value Decomposition. IEEE Transactions on Image Processing 6(3), 479–483 (1997)
Nguyen, T.-A., Hong, M.-C.: Filtering-Based Noise Estimation for Denoising the Image Degraded by Gaussian Noise. In: Ho, Y.-S. (ed.) PSIVT 2011, Part II. LNCS, vol. 7088, pp. 157–167. Springer, Heidelberg (2011)
Uss, M., Vozel, B., Lukin, V., Abramov, S., Baryshev, I., Chehdi, K.: Image Informative Maps for Estimating Noise Standard Deviation and Texture Parameters. Journal on Advances in Signal Processing 2011, Article ID 806516, 12 pages (2011)
Alberola-López, C.: Automatic noise estimation in images using local Statistics. Additive and multiplicative cases. Image and Vision Computing 27, 756–770 (2009)
Bezdek, J.: Pattern recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
Pal, N.R., Bezdek, J.C.: On cluster Validity for the fuzzy C-means Model. IEEE Transaction Fuzzy Systems 3(3), 370–379 (1995)
Karibasappa, K.G., Hiremath, S., Karibasappa, K.: Neural Network Based Noise Identification in Digital Images. International Journal of Network Security (2152-5064) 2(3), 28 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Karibasappa, K.G., Karibasappa, K. (2015). AI Based Automated Identification and Estimation of Noise in Digital Images. In: El-Alfy, ES., Thampi, S., Takagi, H., Piramuthu, S., Hanne, T. (eds) Advances in Intelligent Informatics. Advances in Intelligent Systems and Computing, vol 320. Springer, Cham. https://doi.org/10.1007/978-3-319-11218-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-11218-3_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11217-6
Online ISBN: 978-3-319-11218-3
eBook Packages: EngineeringEngineering (R0)