Abstract
Minimum distance controlled tabular adjustment (CTA) is a perturbative technique of statistical disclosure control for tabular data. Given a table to be protected, CTA looks for the closest safe table by solving an optimization problem using some particular distance in the objective function. CTA has shown to exhibit a low disclosure risk. The purpose of this work is to show that CTA also provides a low information loss, focusing on two-way tables. Computational results on a set of midsize tables validate this statement.
Supported by grants MTM2012-31440 of the Spanish Ministry of Economy and Competitiveness, SGR-2014-542 of the Government of Catalonia, and DwB INFRA-2010-262608 of the FP7 European Union Program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Batanero, C.: Controversies around the role of statistical tests in experimental research. Mathematical Thinking and Learning 2, 75–97 (2000)
Castro, J.: Minimum-distance controlled perturbation methods for large-scale tabular data protection. European Journal of Operational Research 171, 39–52 (2006)
Castro, J.: Recent advances in optimization techniques for statistical tabular data protection. European Journal of Operational Research 216, 257–269 (2012)
Castro, J.: On assessing the disclosure risk of controlled adjustment methods for statistical tabular data. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 20, 921–941 (2012)
Castro, J., Frangioni, A., Gentile, C.: Perspective reformulations of the CTA problem with L 2 distances. Operations Research (in press, 2014)
Castro, J., Giessing, S.: Testing variants of minimum distance controlled tabular adjustment. Monographs of Official Statistics, Eurostat-Office for Official Publications of the European Communities, Luxembourg, pp. 333–343 (2006)
Castro, J., González, J.A.: A tool for analyzing and fixing infeasible RCTA instances. In: Domingo-Ferrer, J., Magkos, E. (eds.) PSD 2010. LNCS, vol. 6344, pp. 17–28. Springer, Heidelberg (2010)
Castro, J., González, J.A.: A fast CTA method without the complicating binary decisions. In: Documents of the Joint UNECE/Eurostat Work Session on Statistical Data Confidentiality, Statistics Canada, Ottawa, pp. 1–7 (2013)
Castro, J., González, J.A.: A multiobjective LP approach for controlled tabular adjustment in statistical disclosure control. Working paper, Dept. of Statistics and Operations Research, Universitat Politècnica de Catalunya (2014)
Cox, L.H., Kelly, J.P., Patil, R.: Balancing quality and confidentiality for multivariate tabular data. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 87–98. Springer, Heidelberg (2004)
Cramér, H.: Mathematical Methods of Statistics. Princeton University Press, Princeton (1946)
Dandekar, R.A., Cox, L.H.: Synthetic tabular Data: an alternative to complementary cell suppression, manuscript, Energy Information Administration, U.S. (2002)
Domingo-Ferrer, J., Mateo-Sanz, J.M., Torra, V.: Comparing SDC methods for microdata on the basis of information loss and disclosure risk. In: Proceedings of ETK-NTTS 2001, pp. 807–826. Eurostat, Luxemburg (2001)
Genz, A., Bretz, F.: Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics, vol. 195. Springer, Heidelberg (2009)
Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Hothorn, T.: mvtnorm: Multivariate Normal and t Distributions, R package version 0.9-9999 (2014), http://CRAN.R-project.org/package=mvtnorm
González, J.A., Castro, J.: A heuristic block coordinate descent approach for controlled tabular adjustment. Computers & Operations Research 38, 1826–1835 (2011)
Giessing, S., Hundepool, A., Castro, J.: Rounding methods for protecting EU-aggregates. In: Eurostat Methodologies and Working Papers. Worksession on Statistical Data Confidentiality, Eurostat-Office for Official Publications of the European Communities, Luxembourg, pp. 255–264 (2009) ISBN 978-92-79-12055-8.
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins Univ. Press, Baltimore (1996)
Greenacre, M. J.: Theory and applications of correspondence analysis. Academic Press, New York (1984)
Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Schulte-Nordholt, E., Spicer, K., de Wolf, P.P.: Statistical Disclosure Control. Wiley, Chichester (2012)
Meyer, D., Zeileis, A., Hornik, K.: vcd: Visualizing Categorical Data. R package version 1.3-1 (2013), http://CRAN.R-project.org/package=vcd
Nenadic, O., Greenacre, M.: Correspondence Analysis in R, with two- and three-dimensional graphics: The ca package. Journal of Statistical Software 20, 1–13 (2007)
R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2012), http://www.R-project.org/
Shlomo, N., Young, C.: Statistical disclosure control methods through a risk-utility framework. In: Domingo-Ferrer, J., Franconi, L. (eds.) PSD 2006. LNCS, vol. 4302, pp. 68–81. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Castro, J., González, J.A. (2014). Assessing the Information Loss of Controlled Adjustment Methods in Two-Way Tables. In: Domingo-Ferrer, J. (eds) Privacy in Statistical Databases. PSD 2014. Lecture Notes in Computer Science, vol 8744. Springer, Cham. https://doi.org/10.1007/978-3-319-11257-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-11257-2_2
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11256-5
Online ISBN: 978-3-319-11257-2
eBook Packages: Computer ScienceComputer Science (R0)