Skip to main content

Automatic Matching on Fracture Surface of Quarried Stone Using the Features of Plug-and-Feather Holes

  • Chapter
  • First Online:
Software Engineering Research, Management and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 578))

  • 860 Accesses

Abstract

In archeology, automatic matching of quarried stones is important for investigating their processing steps and distribution channels, and can save large amounts of human efforts. In this paper, we propose a novel method for matching of quarried blocks of a stone based on feature extraction of plug-and-feather holes, which are holes drilled for splitting the original stone. The cues for detecting holes are the unique shape of plug-and-feather holes. The positional relationship of holes is used to estimate the initial position for the alignment of fracture surfaces. Automatic matching is achieved through the alignment of the fracture surface by ICP algorithm from its initial position. The experiments for an actual stone show the advantage of feature detection in automatic matching of quarried stones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987)

    Article  Google Scholar 

  2. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  3. Brown, J.B., Toler-Franklin, C., Nehab, D., Burns, M., Dobkin, D., Vlachopoulos, A., Doumas, C.: A system for high-volume acquisition and matching of fresco fragments: reassembling Theran wall paintings. In: Proceedings ACM SIGGRAPH 2008. vol. 27, Issue 3, Article No. 84 (2008)

    Google Scholar 

  4. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. In: Proceedings of IEEE International Conference on Image and Vision Computing (ICIVC), vol. 3, pp. 2724–2729 (1991)

    Google Scholar 

  5. Chum, O., Matas, J.: Matching with PROSAC-progressive sample consensus. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 220–226 (2005)

    Google Scholar 

  6. Huang, Q.-X., Flory, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. Proc. ACM SIGGRAPH 25(3), 569–578 (2006)

    Article  Google Scholar 

  7. Ikeuchi, K., Miyazaki, D.: Digitally Archiving Cultural Objects. Springer, New York (2007)

    Google Scholar 

  8. Ikeda, S., Morita, K., Yoshimoto, S., Iwai, D., Sato, K.: SENS-Wiper: a wearable 3-D measurement system using kinect. Proc. Jpn. Soc. Archaeol. Inf. 11, 75–80 (2013). (in Japanese)

    Google Scholar 

  9. Johnson, A.E., Martial, H.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  10. Jost, T., Hugli, H.: A multi-resolution scheme ICP algorithm for fast shape registration. In: Proceedings of First International Symposium on 3D Data Processing Visualization and Transmission, pp. 540–543 (2002)

    Google Scholar 

  11. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2007), pp. 1–10 (2007)

    Google Scholar 

  12. Koller, D., Trimble, J., Najbjerg, T., Levoy, N.G.: Fragments of the city: Stanford’s digital forma Urbis Romae project. In: Proceedings of Third Williams Symposium on Classical Architecture, Journal of Roman Archaeology Suppl. vol. 61, pp. 237–252 (2006)

    Google Scholar 

  13. Levin, D.: Mesh-independent surface interpolation. In: Brunnett, G., Haman, B., Mueller, H. (eds.) Geometric Modeling for Scientific Visualization, pp. 37–49. Springer, Berlin (2004)

    Chapter  Google Scholar 

  14. Masuda, T.: Registration and integration of multiple range images by matching signed distance fields for object shape modeling. Comput. Vis. Image Underst. 87(1), 51–65 (2002)

    Article  MATH  Google Scholar 

  15. Newcombe, R.A., Izadi, S., Hilliges, O., Olyneaux, D., Kim, M.D., Davison, A.J., Kohli, P., Shotton, J., Hodges, S., Fitzgibbon, A.: KinectFusion: Real-time dense surface mapping and tracking. In: Proceedings of 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136 (2011)

    Google Scholar 

  16. Rabbani, T., van den Heuvel, F., Vosselmann, G.: Segmentation of point clouds using smoothness constraint. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 36(5), 248–253 (2006)

    Google Scholar 

  17. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proceedings of 3rd International Conference on 3-D Digital Imaging and Modeling, pp. 145–152 (2001)

    Google Scholar 

  18. Steder, B., Rusu, R.B., Konolige, K., Burgard, W.: Point feature extraction on 3D range scans taking into account object boundaries. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA2011), pp. 2601–2608 (2011)

    Google Scholar 

  19. Winkelbach, S., Westphal, R., Goesling, T.: Pose estimation of cylindrical fragments for semi-automatic bone fracture reduction. In: Proceedings of 25th Annual Symposium of the German Association for Pattern Recognition (DAGM 2003), vol. 2781, pp. 566–573 (2003)

    Google Scholar 

  20. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mr. Y. Mikame of Kanagawa Archaeology Foundation for his supports of measurement of quarried stone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Morita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Morita, K., Ikeda, S., Sato, K. (2015). Automatic Matching on Fracture Surface of Quarried Stone Using the Features of Plug-and-Feather Holes. In: Lee, R. (eds) Software Engineering Research, Management and Applications. Studies in Computational Intelligence, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-319-11265-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11265-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11264-0

  • Online ISBN: 978-3-319-11265-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics