Skip to main content

A Time-Varying Inertia Weight Strategy for Particles Swarms Based on Self-Organized Criticality

  • Conference paper
Computational Intelligence (IJCCI 2012)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 577))

Included in the following conference series:

Abstract

This paper uses the emergent properties of a Self-Organized Criticality (SOC) system for controlling the inertia weight of the Particle Swarm Optimization (PSO) algorithm. The strategy is based on the SOC Bak-Sneppen model of co-evolution. In this model, an ecosystem is simulated by a population of species with random fitness connected in a ring topology. In each time-step, the worst species and its neighbors are randomly mutated. The threshold fitness of the model, which is the highest level the lowest fitness has reached, is used in this paper for controlling the inertia weight. The resulting algorithm is named Bak-Sneppen threshold PSO (BSt-PSO). An experimental setup compares the new algorithm with versions of the PSO with varying inertia weight, including a state-of-the-art algorithm with dynamic variation of the parameters. The results demonstrate that the BSt-PSO is clearly faster than the other algorithms in meeting the convergence criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arumugam, M.S., Rao, M.V.C.: On the Performance of the Particle Swarm Optimization Algorithm with Various Inertia Weight Variants for Computing Optimal Control of a Class of Hybrid Systems. Discrete Dynamics in Nature and Society 2006, Article ID 79295, 17 pages (2006)

    Google Scholar 

  2. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized Criticality: an Explanation of 1/f Noise. Physical Review of Letters 59(4), 381–384 (1987)

    Article  Google Scholar 

  3. Bak, P., Sneppen, K.: Punctuated Equilibrium and Criticality in a Simple Model of Evolution. Physical Review of Letters 71(24), 4083–4086 (1993)

    Article  Google Scholar 

  4. Boettcher, S., Percus, A.G.: Optimization with Extremal Dynamics. Complexity 8(2), 57–62 (2003)

    Article  MathSciNet  Google Scholar 

  5. Eberhart, R.C., Shi, Y.: Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation, pp. 84–88. IEEE Press (2000)

    Google Scholar 

  6. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter Control in Evolutionary Algorithms. IEEE Trans. on Evolutionary Computation 3(2), 124–141 (1999)

    Article  Google Scholar 

  7. Fernandes, C.M., Merelo, J.J., Ramos, V., Rosa, A.C.: A Self-Organized Criticality Mutation Operator for Dynamic Optimization Problems. In: Proceedings of the 2008 Genetic and Evolutionary Computation Conference, pp. 937–944. ACM (2008)

    Google Scholar 

  8. Fernandes, C.M., Laredo, J.L.J., Mora, A.M., Rosa, A.C., Merelo, J.J.: A Study on the Mutation Rates of a Genetic Algorithm Interacting with a Sandpile. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol. 6624, pp. 32–42. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Fernandes, C.M., Merelo, J.J., Rosa, A.C.: Using Self-Organized Criticality for Adjusting the Parameters of a Particle Swarm Optimization Algorithm. In: Proceedings of the 4th International Conference on Evolutionary Computation Theory and Applications (2012)

    Google Scholar 

  10. Grefenstette, J.J.: Genetic Algorithms for Changing Environments. In: Proceedings of Parallel Problem Solving from Nature II, pp. 137–144. North-Holland, Amsterdam (1992)

    Google Scholar 

  11. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  12. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  13. Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the IEEE World Congress on Evolutionary Computation, pp. 1671–1676 (2002)

    Google Scholar 

  14. Krink, T., Rickers, P., René, T.: Applying Self-organized Criticality to Evolutionary Algorithms. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 375–384. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Krink, T., Thomsen, R.: Self-Organized Criticality and Mass Extinction in Evolutionary Algorithms. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation (CEC 2001), vol. 2, pp. 1155–1161. IEEE Press (2001)

    Google Scholar 

  16. Løvbjerg, M., Krink, T.: Extending particle swarm optimizers with self-organized criticality. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1588–1593. IEEE Computer Society (2002)

    Google Scholar 

  17. Ratnaweera, A., Halgamuge, K.S., Watson, H.C.: Self-organizing Hierarchical Particle Swarm Optimizer with Time-varying Acceleration Coefficients. IEEE Transactions on Evolutionary Computation 8(3), 240–254 (2004)

    Article  Google Scholar 

  18. Shi, Y., Eberhart, R.C.: A Modified Particle Swarm Optimizer. In: Proceedings of IEEE 1998 International Conference on Evolutionary Computation, pp. 69–73. IEEE Press (1998)

    Google Scholar 

  19. Shi, Y., Eberhart, R.C.: Empirical Study of Particle Swarm Optimization. In: Proceedings of the 1999 IEEE Int. Congr. Evolutionary Computation, vol. 3, pp. 101–106 (1999)

    Google Scholar 

  20. Suresh, K., Ghosh, S., Kundu, D., Sen, A., Das, S., Abraham, A.: Inertia-Adaptive Particle Swarm Optimizer for Improved Global Search. In: Proceedings of the 8th Inter. Conference on Intelligent Systems Design and Applications, vol. 2, pp. 253–258. IEEE, Washington, DC (2008)

    Google Scholar 

  21. Tinós, R., Yang, S.: A self-organizing Random Immigrants Genetic Algorithm for Dynamic Optimization Problems. Genetic Programming and Evolvable Machines 8(3), 255–286 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos M. Fernandes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fernandes, C.M., Merelo, J.J., Rosa, A.C. (2015). A Time-Varying Inertia Weight Strategy for Particles Swarms Based on Self-Organized Criticality. In: Madani, K., Correia, A., Rosa, A., Filipe, J. (eds) Computational Intelligence. IJCCI 2012. Studies in Computational Intelligence, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-319-11271-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11271-8_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11270-1

  • Online ISBN: 978-3-319-11271-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics