Abstract
NVIDIA’s Tesla Graphics Processing Units (GPUs) have been used to solve various kinds of long running-time applications because of their high performance compute power. A GPU consists of hundreds or even thousands processor cores and adopts (Single Instruction Multiple Threading) SIMT) architecture. This paper proposes an approach that optimizes the Tabu Search algorithm for solving the Permutation Flowshop Scheduling Problem (PFSP) on a GPU. We use a math function to generate all different permutations, avoiding the need of placing all the permutations in the global memory. Experimental results show that the GPU implementation of our proposed Tabu Search for PFSP runs up to 90 times faster than its CPU counterpart.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26, 80–113 (2007)
NVIDIA GPU, http://www.nvidia.com/object/cuda_home_new.html
NVIDIA GPU Programming Guide, http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors. NVIDIA
Oster, B.: Programming the CUDA Architecture: A Look at GPU Computing. Electronic Design 57(7) (2009)
Ge, M., Wang, Q.-G., Chiu, M.-S., Lee, T.-H., Hang, C.-C., Teo, K.-H.: An effective technique for batch process optimization with application to crystallization. Chemical Engineering Research and Design 78(1), 99–106 (2000)
Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B.: Novel adaptive gravitational search algorithm for fuzzy controlled servo systems. IEEE Transactions on Industrial Informatics 8(4), 791–800 (2012)
Saha, S.K., Ghoshal, S.P., Kar, R., Mandal, D.: Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Transactions 52(6), 781–794 (2013)
Yazdani, D., Nasiri, B., Azizi, R., Sepas-Moghaddam, A., Meybodi, M.R.: Optimization in dynamic environments utilizing a novel method based on particle swarm optimization. International Journal of Artificial Intelligence, Vol 11(A13), 170–192 (2013)
Bożejko, W., Wodecki, M.: Parallel genetic algorithm for the flow shop scheduling problem. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 566–571. Springer, Heidelberg (2004)
Glover, F.: Tabu search—part I. ORSA Journal on Computing 1(3), 190–206 (1989)
Glover, F.: Tabu search—part II. ORSA Journal on Computing 1(2), 4–32 (1990)
Janiak, A., Janiak, W., Lichtenstein, M.: Tabu search on GPU. Journal of Universal Computer Science 14, 2416–2427 (2008)
Czapiński, M., Barnes, S.: Tabu Search with two approaches to parallel flowshop evaluation on CUDA platform. J. Parallel Distrib. Comput. 71, 802–811 (2011)
Chakroun, I., Bendjoudi, A., Melab, N.: Reducing thread divergence in GPU-based b&B applied to the flow-shop problem. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 559–568. Springer, Heidelberg (2012)
Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly 1(1), 61–68 (1954)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Huang, LT., Jhan, SS., Li, YJ., Wu, CC. (2014). Solving the Permutation Problem Efficiently for Tabu Search on CUDA GPUs. In: Hwang, D., Jung, J.J., Nguyen, NT. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. Lecture Notes in Computer Science(), vol 8733. Springer, Cham. https://doi.org/10.1007/978-3-319-11289-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-11289-3_35
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11288-6
Online ISBN: 978-3-319-11289-3
eBook Packages: Computer ScienceComputer Science (R0)