Skip to main content

Solving the Permutation Problem Efficiently for Tabu Search on CUDA GPUs

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8733))

Included in the following conference series:

  • 1829 Accesses

Abstract

NVIDIA’s Tesla Graphics Processing Units (GPUs) have been used to solve various kinds of long running-time applications because of their high performance compute power. A GPU consists of hundreds or even thousands processor cores and adopts (Single Instruction Multiple Threading) SIMT) architecture. This paper proposes an approach that optimizes the Tabu Search algorithm for solving the Permutation Flowshop Scheduling Problem (PFSP) on a GPU. We use a math function to generate all different permutations, avoiding the need of placing all the permutations in the global memory. Experimental results show that the GPU implementation of our proposed Tabu Search for PFSP runs up to 90 times faster than its CPU counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Kruger, J., Lefohn, A.E., Purcell, T.J.: A survey of general-purpose computation on graphics hardware. Computer Graphics Forum 26, 80–113 (2007)

    Article  Google Scholar 

  2. NVIDIA GPU, http://www.nvidia.com/object/cuda_home_new.html

  3. NVIDIA GPU Programming Guide, http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

  4. Kirk, D.B., Hwu, W.W.: Programming Massively Parallel Processors. NVIDIA

    Google Scholar 

  5. Oster, B.: Programming the CUDA Architecture: A Look at GPU Computing. Electronic Design 57(7) (2009)

    Google Scholar 

  6. Ge, M., Wang, Q.-G., Chiu, M.-S., Lee, T.-H., Hang, C.-C., Teo, K.-H.: An effective technique for batch process optimization with application to crystallization. Chemical Engineering Research and Design 78(1), 99–106 (2000)

    Article  Google Scholar 

  7. Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Radac, M.-B.: Novel adaptive gravitational search algorithm for fuzzy controlled servo systems. IEEE Transactions on Industrial Informatics 8(4), 791–800 (2012)

    Article  Google Scholar 

  8. Saha, S.K., Ghoshal, S.P., Kar, R., Mandal, D.: Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Transactions 52(6), 781–794 (2013)

    Article  Google Scholar 

  9. Yazdani, D., Nasiri, B., Azizi, R., Sepas-Moghaddam, A., Meybodi, M.R.: Optimization in dynamic environments utilizing a novel method based on particle swarm optimization. International Journal of Artificial Intelligence, Vol 11(A13), 170–192 (2013)

    Google Scholar 

  10. Bożejko, W., Wodecki, M.: Parallel genetic algorithm for the flow shop scheduling problem. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 566–571. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Glover, F.: Tabu search—part I. ORSA Journal on Computing 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  12. Glover, F.: Tabu search—part II. ORSA Journal on Computing 1(2), 4–32 (1990)

    Article  Google Scholar 

  13. Janiak, A., Janiak, W., Lichtenstein, M.: Tabu search on GPU. Journal of Universal Computer Science 14, 2416–2427 (2008)

    Google Scholar 

  14. Czapiński, M., Barnes, S.: Tabu Search with two approaches to parallel flowshop evaluation on CUDA platform. J. Parallel Distrib. Comput. 71, 802–811 (2011)

    Article  Google Scholar 

  15. Chakroun, I., Bendjoudi, A., Melab, N.: Reducing thread divergence in GPU-based b&B applied to the flow-shop problem. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part I. LNCS, vol. 7203, pp. 559–568. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly 1(1), 61–68 (1954)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, LT., Jhan, SS., Li, YJ., Wu, CC. (2014). Solving the Permutation Problem Efficiently for Tabu Search on CUDA GPUs. In: Hwang, D., Jung, J.J., Nguyen, NT. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. Lecture Notes in Computer Science(), vol 8733. Springer, Cham. https://doi.org/10.1007/978-3-319-11289-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11289-3_35

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11288-6

  • Online ISBN: 978-3-319-11289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics