Abstract
Six variants of self-adapting genetic algorithms with varying mutation, crossover, and selection were developed. To implement self-adaptation the main part of a chromosome which comprised the solution was extended to include mutation rates, crossover rates, and/or tournament size. The solution part comprised the representation of a fuzzy system and was real-coded whereas to implement the proposed self-adapting mechanisms binary coding was employed. The resulting self-adaptive genetic fuzzy systems were evaluated using real-world datasets derived from a cadastral system and included records referring to residential premises transactions. They were also compared in respect of prediction accuracy with genetic fuzzy systems optimized by a classical genetic algorithm, multilayer perceptron and radial basis function neural network. The analysis of the results was performed using statistical methodology including nonparametric tests followed by post-hoc procedures designed especially for multiple N×N comparisons.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Palaniswami, M., Attikiouzel, Y. (eds.) Computational Intelligence: A Dynamic Systems Perspective, pp. 152–163. IEEE Press, New York (1995)
Smith, J.E., Fogarty, T.C.: Operator and parameter adaptation in genetic algorithms. Soft Computing 1(2), 81–87 (1997)
Eiben, E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Transactions on Evolutionary Computation 3(2), 124–141 (1999)
Bäck, T., Schwefel, H.-P.: An Overview of Evolutionary Algorithms for Parameter Optimization. Evolutionary Computation 1(1), 1–23 (1993)
Meyer-Nieberg, S., Beyer, H.-G.: Self-Adaptation in Evolutionary Algorithms. In: Lobo, F.G., et al. (eds.) Self-Adaptation in Evolutionary Algorithms. SCI, vol. 54, pp. 47–75. Springer, Heidelberg (2007)
Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in Evolutionary Computation: A Survey. In: Proceedings of the Fourth International Conference on Evolutionary Computation (ICEC 1997), pp. 65–69. IEEE Press, New York (1997)
Deb, K., Beyer, H.-G.: Self-adaptive genetic algorithms with simulated binary crossover. Evolutionary Computation 9(2), 197–221 (2001)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)
De Jong, K.: An analysis of the behavior of a class of genetic adaptive systems. PhD thesis, University of Michigan (1975)
Lobo, F.: The parameter-less genetic algorithm: rational and automated parameter selection for simplified genetic algorithm operation. PhD thesis, Nova University of Lisboa (2000)
Król, D., Lasota, T., Nalepa, W., Trawiński, B.: Fuzzy system model to assist with real estate appraisals. In: Okuno, H.G., Ali, M. (eds.) IEA/AIE 2007. LNCS (LNAI), vol. 4570, pp. 260–269. Springer, Heidelberg (2007)
Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Mamdani and TSK Fuzzy Models for Real Estate Appraisal. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part III. LNCS (LNAI), vol. 4694, pp. 1008–1015. Springer, Heidelberg (2007)
Graczyk, M., Lasota, T., Trawiński, B.: Comparative Analysis of Premises Valuation Models Using KEEL, RapidMiner, and WEKA. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 800–812. Springer, Heidelberg (2009)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Exploration of Bagging Ensembles Comprising Genetic Fuzzy Models to Assist with Real Estate Appraisals. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 554–561. Springer, Heidelberg (2009)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: A Multi-agent System to Assist with Real Estate Appraisals Using Bagging Ensembles. In: Nguyen, N.T., Kowalczyk, R., Chen, S.-M. (eds.) ICCCI 2009. LNCS, vol. 5796, pp. 813–824. Springer, Heidelberg (2009)
Graczyk, M., Lasota, T., Trawiński, B., Trawiński, K.: Comparison of Bagging, Boosting and Stacking Ensembles Applied to Real Estate Appraisal. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) Intelligent Information and Database Systems. LNCS, vol. 5991, pp. 340–350. Springer, Heidelberg (2010)
Krzystanek, M., Lasota, T., Telec, Z., Trawiński, B.: Analysis of Bagging Ensembles of Fuzzy Models for Premises Valuation. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) Intelligent Information and Database Systems. LNCS, vol. 5991, pp. 330–339. Springer, Heidelberg (2010)
Kempa, O., Lasota, T., Telec, Z., Trawiński, B.: Investigation of bagging ensembles of genetic neural networks and fuzzy systems for real estate appraisal. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011, Part II. LNCS, vol. 6592, pp. 323–332. Springer, Heidelberg (2011)
Lasota, T., Telec, Z., Trawiński, G., Trawiński, B.: Empirical Comparison of Resampling Methods Using Genetic Fuzzy Systems for a Regression Problem. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) IDEAL 2011. LNCS, vol. 6936, pp. 17–24. Springer, Heidelberg (2011)
Lasota, T., Telec, Z., Trawiński, B., Trawiński, K.: Investigation of the eTS Evolving Fuzzy Systems Applied to Real Estate Appraisal. Journal of Multiple-Valued Logic and Soft Computing 17(2-3), 229–253 (2011)
Lughofer, E., Trawiński, B., Trawiński, K., Kempa, O., Lasota, T.: On Employing Fuzzy Modeling Algorithms for the Valuation of Residential Premises. Information Sciences 181, 5123–5142 (2011)
Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: An Attempt to Employ Genetic Fuzzy Systems to Predict from a Data Stream of Premises Transactions. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 127–140. Springer, Heidelberg (2012)
Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: An Analysis of Change Trends by Predicting from a Data Stream Using Genetic Fuzzy Systems. In: Nguyen, N.-T., Hoang, K., J\k{e}drzejowicz, P. (eds.) ICCCI 2012, Part I. LNCS, vol. 7653, pp. 220–229. Springer, Heidelberg (2012)
Trawiński, B., Lasota, T., Smętek, M., Trawiński, G.: Weighting Component Models by Predicting from Data Streams Using Ensembles of Genetic Fuzzy Systems. In: Larsen, H.L., Martin-Bautista, M.J., Vila, M.A., Andreasen, T., Christiansen, H. (eds.) FQAS 2013. LNCS, vol. 8132, pp. 567–578. Springer, Heidelberg (2013)
Trawiński, B.: Evolutionary Fuzzy System Ensemble Approach to Model Real Estate Market based on Data Stream Exploration. Journal of Universal Computer Science 19(4), 539–562 (2013)
Smętek, M., Trawiński, B.: Investigation of Genetic Algorithms with Self-adaptive Crossover, Mutation, and Selection. In: Corchado, E., Kurzyński, M., Woźniak, M. (eds.) HAIS 2011, Part I. LNCS, vol. 6678, pp. 116–123. Springer, Heidelberg (2011)
Smętek, M., Trawiński, B.: Investigation of Self-adapting Genetic Algorithms using Some Multimodal Benchmark Functions. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 213–223. Springer, Heidelberg (2011)
Maruo, M.H., Lopes, H.S., Delgado, M.R.: Self-Adapting Evolutionary Parameters: Encoding Aspects for Combinatorial Optimization Problems. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 154–165. Springer, Heidelberg (2005)
Smętek, M., Trawiński, B.: Selection of Heterogeneous Fuzzy Model Ensembles Using Self-adaptive Genetic Algorithms. New Generation Computing 29(3), 309–327 (2011)
Cordón, O., Herrera, F.: A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Tr. on Sys., Man and Cyber., Part B 29(6), 703–715 (1999)
Król, D., Lasota, T., Trawiński, B., Trawiński, K.: Investigation of evolutionary optimization methods of TSK fuzzy model for real estate appraisal. International Journal of Hybrid Intelligent Systems 5(3), 111–128 (2008)
Trawiński, B., Smętek, M., Lasota, T., Trawiński, G.: Evaluation of Fuzzy System Ensemble Approach to Predict from a Data Stream. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboonviwat, K. (eds.) ACIIDS 2014, Part II. LNCS, vol. 8398, pp. 137–146. Springer, Heidelberg (2014)
Telec, Z., Trawiński, B., Lasota, T., Trawiński, K.: Comparison of Evolving Fuzzy Systems with an Ensemble Approach to Predict from a Data Stream. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 377–387. Springer, Heidelberg (2013)
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7, 1–30 (2006)
García, S., Herrera, F.: An Extension on “Statistical Comparisons of Classifiers over Multiple Data Sets” for all Pairwise Comparisons. Journal of Machine Learning Research 9, 2677–2694 (2008)
Graczyk, M., Lasota, T., Telec, Z., Trawiński, B.: Nonparametric Statistical Analysis of Machine Learning Algorithms for Regression Problems. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part I. LNCS, vol. 6276, pp. 111–120. Springer, Heidelberg (2010)
Trawiński, B., Smętek, M., Telec, Z., Lasota, T.: Nonparametric Statistical Analysis for Multiple Comparison of Machine Learning Regression Algorithms. International Journal of Applied Mathematics and Computer Science 22(4), 867–881 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Lasota, T., Smętek, M., Telec, Z., Trawiński, B., Trawiński, G. (2014). Application of Self-adapting Genetic Algorithms to Generate Fuzzy Systems for a Regression Problem. In: Hwang, D., Jung, J.J., Nguyen, NT. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. Lecture Notes in Computer Science(), vol 8733. Springer, Cham. https://doi.org/10.1007/978-3-319-11289-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-11289-3_6
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11288-6
Online ISBN: 978-3-319-11289-3
eBook Packages: Computer ScienceComputer Science (R0)