Skip to main content

Goal-Oriented Requirements for ACDT Algorithms

  • Conference paper
Computational Collective Intelligence. Technologies and Applications (ICCCI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8733))

Included in the following conference series:

Abstract

This paper is devoted to the new application of the ACDF approach. In this work we propose a new way of an virtual-ant performance evaluation. This approach concentrates on the decision tree construction using ant colony metaphor the goal of experiments is to show that decision trees construction may by oriented not only at accuracy measure. The proposed approach enables (depending on the decision tree quality measure) the decision tree construction with high value of accuracy, recall, precision, F-measure or Matthews correlation coefficient. It is possible due to use of nondeterministic, probabilistic approach - Ant Colony Optimization. The algorithm proposed was examined and the experimental study confirmed that the goal-oriented ACDT can create expected decision trees, accordance to the specified measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boryczka, U., Kozak, J.: Ant colony decision trees – A new method for constructing decision trees based on ant colony optimization. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010, Part I. LNCS, vol. 6421, pp. 373–382. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Boryczka, U., Kozak, J.: New Algorithms for Generation Decision Trees – Ant–Miner and Its Modifications. In: Abraham, A., et al. (eds.) Foundations of Comput. Intel. 6. SCI, vol. 206, pp. 229–264. Springer, Heidelberg (2009)

    Google Scholar 

  3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Chapman & Hall, New York (1984)

    MATH  Google Scholar 

  4. Chai, B.-B., Zhuang, X., Zhao, Y., Sklansky, J.: Binary linear decision tree with genetic algorithm. In: International Conference on Pattern Recognition, vol. 4 (1996)

    Google Scholar 

  5. Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimization. McGraw–Hill, Cambridge (1999)

    Google Scholar 

  6. Dorigo, M., Di Caro, G.: New Ideas in Optimization. McGraw–Hill, London (1999)

    Google Scholar 

  7. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  8. Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.): ANTS 2008. LNCS, vol. 5217. Springer, Heidelberg (2008)

    Google Scholar 

  9. Folino, G., Pizzuti, C., Spezzano, G.: Genetic programming and simulated annealing: A hybrid method to evolve decision trees. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 294–303. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Fu, Z., Golden, B.L., Lele, S., Raghavan, S., Wasil, E.A.: Diversification for better classification trees. Computers & OR 33(11), 3185–3202 (2006)

    Article  MATH  Google Scholar 

  11. Grasse, P.–P.: Termitologia, vol. II. Masson, Paris (1984)

    Google Scholar 

  12. Hyafil, L., Rivest, R.: Constructing optimal binary decision trees is NP–complete. Inf. Process. Lett. 5(1), 15–17 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kozak, J., Boryczka, U.: Dynamic version of the ACDT/ACDF algorithm for H-bond data set analysis. In: Bǎdicǎ, C., Nguyen, N.T., Brezovan, M. (eds.) ICCCI 2013. LNCS, vol. 8083, pp. 701–710. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Kr\k{e}towski, M.: A memetic algorithm for global induction of decision trees. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 531–540. Springer, Heidelberg (2008)

    Google Scholar 

  15. Murphy, O.J., McCraw, R.L.: Designing Storage Efficient Decision Trees. IEEE Transactions on Computers 40, 315–320 (1991)

    Article  Google Scholar 

  16. Otero, F.E.B., Freitas, A.A., Johnson, C.G.: Handling continuous attributes in ant colony classification algorithms. In: CIDM, pp. 225–231 (2009)

    Google Scholar 

  17. Rokach, L., Maimon, O.: Data Mining With Decision Trees: Theory And Applications. World Scientific Publishing (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kozak, J., Boryczka, U. (2014). Goal-Oriented Requirements for ACDT Algorithms. In: Hwang, D., Jung, J.J., Nguyen, NT. (eds) Computational Collective Intelligence. Technologies and Applications. ICCCI 2014. Lecture Notes in Computer Science(), vol 8733. Springer, Cham. https://doi.org/10.1007/978-3-319-11289-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11289-3_60

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11288-6

  • Online ISBN: 978-3-319-11289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics