Skip to main content

Noise Estimation for Computer-Generated Images Using an Interval Type-2 Fuzzy Sets Filter

  • Conference paper
Intelligent Systems'2014

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 323))

Abstract

Global illumination methods based on stochastic techniques provide photo-realistic images. However, they are prone to stochastic noise that can be reduced by increasing the number of paths as proved by Monte Carlo theory. The problem of finding the number of paths that are required in order to ensure that human observers cannot perceive any noise is still open. This paper proposes a new noise estimator, based on interval type-2 fuzzy sets (IT2 FSs) and devoted to computer-generated images. This model can then be used in any progressive stochastic global illumination method in order to estimate the noise level of different parts of any image. A comparative study of this model with a simple test image demonstrates the good consistency between an added noise value and the results from the noise estimator. The proposed noise estimator results have been too compared with full-reference quality measures (or faithfullness measures) like SSIM and gives satisfactory performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kajiya, J.: The Rendering Equation. ACM Computer Graphics 20, 143–150 (1986)

    Article  Google Scholar 

  2. Mitchell, D.P.: Generating antialiased images at low sampling densities. In: Proceedings of SIGGRAPH 1987, pp. 65–72. ACM Press, New York (1987)

    Google Scholar 

  3. Farrugia, J., Péroche, B.: A Progressive Rendering Algorithm Using an Adaptive Perceptually Based Image Metric. Comput. Graph. Forum 23, 605–614 (2004)

    Article  Google Scholar 

  4. Longhurst, P., Debattista, K., Chalmers, A.: A GPU based Saliency Map for High-Fidelity Selective Rendering. In: AFRIGRAPH 2006 4th International Conference on Computer Graphics, Virtual Reality, Visualisation and Interaction in Africa, pp. 21–29. ACM SIGGRAPH (2006)

    Google Scholar 

  5. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process 13(4) (2004)

    Google Scholar 

  6. Zhang, J., Ong, S., Thinh, M.: Kurtosis-based no-reference quality assessment of JPEG2000 images. Signal Processing: Image Communication 26, 13–23 (2011)

    Google Scholar 

  7. Ferzli, R., Karam, L.: No-reference objective wavelet based noise immune image sharpness metric. In: International Conference on Image Processing (2005)

    Google Scholar 

  8. Delepoulle, S., Bigand, A., Renaud, C.: A no-reference computer-generated images quality metric and its application to denoising. In: IEEE 6th International Conference ‘Intelligent Systems’ (2012)

    Google Scholar 

  9. Wang, Z., Simoncelli, E.P.: Reduced Reference Image Quality Assessment Using a Wavelet-domain Natural Image Statistic Model. In: Proc. SPIE, Conf. on Human Vision and Electronic Imaging X, vol. 5666, pp. 149–159 (2005)

    Google Scholar 

  10. Li, Q., Wang, Z.: Reduced-Reference Image Quality Assessment using Divisive Normalization Based Image Representation. IEEE Journal of Selected Topics in Signal Processing 3, 202–211 (2009)

    Article  Google Scholar 

  11. Lahoudou, A., Viennet, E., Beghdadi, A.: Selection low-level features for image quality assessment by statistical methods. Journal of Computing and Information Technology 2, 183–189 (2010)

    Google Scholar 

  12. Olsen, S.I.: Estimation of noise in Images: an evaluation. CVGIP 55, 319–323 (1993)

    Google Scholar 

  13. Bigand, A., Colot, O.: Fuzzy filter based on interval-valued fuzzy sets for image filtering. Fuzzy Sets and Systems 161, 96–117 (2010)

    Article  MathSciNet  Google Scholar 

  14. Shirley, P., Wang, C., Zimmerman, K.: Monte Carlo techniques for direct lighting calculations. ACM Transactions on Graphics 15, 1–36 (1996)

    Article  Google Scholar 

  15. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning. Information Sciences 8, 199–249 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sussner, P., Nachtegael, M., Esmi, E.: An approach towards edge-detection and watershed segmentation based on an interval-valued morphological gradient. In: Proceedings of IPCV (2011)

    Google Scholar 

  17. Jurio, A., Paternain, D., Lopez-Molina, C., Bustince, H., Mesiar, H., Beliakov, G.: A construction method of interval-valued fuzzy sets for image processing. In: proceedings 2011 IEEE Symposium on Advances in Type-2 Fuzzy Logic Systems (2011)

    Google Scholar 

  18. Bustince, H., Barrenechea, E., Pergola, M., Fernandez, J.: Interval-valued fuzzy sets constructed from matrices: Application to edge detection. Fuzzy Sets and Systems 160, 1819–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Babaud, J., Witkin, A.P., Baudin, M., Duda, R.O.: Uniqueness of the Gausssian kernel for scale-space filtering. IEEE Trans. on PAMI 8, 26–33 (1986)

    Article  MATH  Google Scholar 

  20. Kaufmann, A.: Introduction to the theory of fuzzy set - Fundamental theorical elements, vol. 28. Academic Press, New York (1975)

    Google Scholar 

  21. Deluca, A., Termini, S.: A definition of a nonprobabilistic entropy in the setting of fuzzy set theory. Information and Control 20, 301–312 (1972)

    Article  MathSciNet  Google Scholar 

  22. Tizhoosh, H.: Image thresholding using type-2 fuzzy sets. Pattern Recognition 38, 2363–2372 (2005)

    Article  MATH  Google Scholar 

  23. Pal, N., Bezdek, J.: Measures of fuzziness: a review and several classes. Van Nostrand Reinhold, New York (1994)

    Google Scholar 

  24. Delepoulle, S., Bigand, A., Renaud, C.: Interval type-2 fuzzy sets based no-reference quality evaluation of synthesis images. In: Proceedings of CGVR 2011 (2011)

    Google Scholar 

  25. Jolion, J.M., Meer, P., Rosenfeld, A.: A fast parallel algorithm for blind estimation of noise variance. IEEE Trans. on PAMI 12, 216–223 (1990)

    Article  Google Scholar 

  26. Rank, M., Lendl, M., Unbehauen, R.: Estimation of image noise variance. In: Proc. of the IEE Visual Signal Process (1999)

    Google Scholar 

  27. Starck, J.L., Murtagh, F.: Automatic noise estimation from the multiresolution support. PASP 110, 193–199 (1998)

    Article  Google Scholar 

  28. Deng, G., Tay, D.B.H., Marusic, S.: A signal denoising algorithm based on overcomplete wavelet representations and gaussian models. Signal Process 87, 866–876 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Delepoulle, S., Bigand, A., Renaud, C. (2015). Noise Estimation for Computer-Generated Images Using an Interval Type-2 Fuzzy Sets Filter. In: Filev, D., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-319-11310-4_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11310-4_53

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11309-8

  • Online ISBN: 978-3-319-11310-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics