Skip to main content

An Image Analysis Algorithm for Soil Structure Identification

  • Conference paper
Intelligent Systems'2014

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 323))

  • 4075 Accesses

Abstract

Pore space study has been utilized as a general method for defining soil structures. This is because the characteristics particular to pore space impact the majority of physical and physicochemical soil parameters relevant due to plant growth. This paper presents an image segmentation approach for detecting the soil pore structures that have been studied by way of soil tomography sections. In so-doing, a research study was conducted using a density-based clustering method, and in turn, the nonparametric kernel estimation methodology. This overcomes the rigidity of arbitrary assumptions concerning the number or shape of clusters among data, and lets the researcher detect inherent data structures. After a short description of the method, the practical aspects and applications illustrated with a number of soil aggregates are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bandyopadhyay, S., Saha, S., Pedrycz, W.: Use of a fuzzy granulation-degranulation criterion for assessing cluster validity. Fuzzy Sets and Systems 170, 22–42 (2011)

    Article  Google Scholar 

  2. Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Łukasik, S., Żak, S.: Complete Gradient Clustering Algorithm for Features Analysis of X-Ray Images. In: Piętka, E., Kawa, J. (eds.) Information Technologies in Biomedicine, vol. 2, pp. 15–24. Springer, Berlin (2010)

    Chapter  Google Scholar 

  3. Das, D., Ghosh, M., Chakraborty, C., Maiti, A.K., Pal, M.: Probabilistic prediction of malaria using morphological and textural information. In: 2011 International Conference on Image Information Processing, Durgapur, India, November 3-5 (2011)

    Google Scholar 

  4. Fukunaga, K., Hostetler, L.D.: The estimation of the gradient of a density function, with applications in Pattern Recognition. IEEE Transactions on Information Theory 21, 32–40 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ghosh, M., Das, D., Chakraborty, C., Ray, A.K.: Plasmodium vivax segmentation using modified fuzzy divergence. In: 2011 International Conference on Image Information Processing, Durgapur, India, November 3-5 (2011)

    Google Scholar 

  6. Hallett, P., Lichner, L., Czachor, H., Józefaciuk, G.: Pore shape and organic compounds drive major changes in the hydrological characteristics of agricultural soils. European Journal of Soil Science 64, 334–344 (2013)

    Article  Google Scholar 

  7. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)

    Book  Google Scholar 

  8. Kulczycki, P.: Estymatory jądrowe w analizie systemowej. WNT, Warszawa (2005)

    Google Scholar 

  9. Kulczycki, P., Charytanowicz, M.: A Complete Gradient Clustering Algorithm Formed with Kernel Estimators. International Journal of Applied Mathematics and Computer Science 20, 123–134 (2010)

    Article  MathSciNet  Google Scholar 

  10. Kulczycki, P., Charytanowicz, M., Kowalski, P.A., Łukasik, S.: The Complete Gradient Clustering Algorithm: Properties in Practical Applications. Journal of Applied Statistics 39, 1211–1224 (2012)

    Article  MathSciNet  Google Scholar 

  11. Mirkin, B.: Clustering for Data Mining: A Data Recovery Approach. Chapman and Hall, London (2005)

    Book  Google Scholar 

  12. Nowak, P., Romaniuk, M.: A fuzzy approach to option pricing in a Levy process setting. International Journal of Applied Mathematics and Computer Science 23, 613–622 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nowak, P., Romaniuk, M.: Application of Levy processes and Esscher transformed martingale measures for option pricing in fuzzy framework. Journal of Computational and Applied Mathematics 263, 129–151 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pal, N.R., Pal, S.K.: A review of image segmentation techniques. Pattern Recognition 29, 1277–1294 (1993)

    Article  Google Scholar 

  15. Perret, J.S., Prasher, S.O., Kacimov, A.R.: Mass fractal dimension of soils macropores using computed tomography: from the box counting to the cube-counting algorithm. Journal of Hydrology 26, 285–297 (2003)

    Google Scholar 

  16. Peth, S., Nellesen, J., Fischer, G., Horn, R.: Non-invasive 3D analysis of local soil deformation under mechanical and hydraulic stresses by μCT and digital image correlation. Soil and Tillage Research 111, 3–18 (2010)

    Article  Google Scholar 

  17. Pires de Silva, A., Imhoff, S., Kay, B.: Plant response to mechanical resistance and air-filled porosity of soils under conventional and no-tillage system. Scientia Agricola 6, 451–456 (2004)

    Article  Google Scholar 

  18. Ruberto, C.D., Dempster, A., Khan, S., Jarra, B.: Analysis of infected blood cell images using morphological operators. Image and Vision Computing 20, 133–146 (2002)

    Article  Google Scholar 

  19. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    Book  MATH  Google Scholar 

  20. Wand, M.P., Jones, M.C.: Kernel Smoothing. Chapman and Hall, London (1994)

    Google Scholar 

  21. Wojnar, L., Majorek, M.: Komputerowa analiza obrazu. Computer Scanning System, Warszawa (1994)

    Google Scholar 

  22. Zdravkov, B., Cermak, J., Sefara, M., Janku, J.: Pore classification in the characterization of porous materials: A perspective. Central European Journal of Chemistry 5, 385–395 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Charytanowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Charytanowicz, M., Kulczycki, P. (2015). An Image Analysis Algorithm for Soil Structure Identification. In: Filev, D., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-319-11310-4_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11310-4_59

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11309-8

  • Online ISBN: 978-3-319-11310-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics