Abstract
The paper considers the generalized nets as an extension of Petri nets applied for modeling of the methodology called Symbolic Essential Attributes Approximation (Krawczak and Szkatuła, 2014). SEAA was developed to reduce the dimensionality of multidimensional time series by generating a new nominal representation of the original data series. In general the approach is based on the concept of data series envelopes and essential attributes obtained by a multilayer neural network. The symbolic data series representation - which just describes the compressed representation of the original data series - is obtained via discretization of the real-valued essential attributes. In this paper the generalized nets were used to model the logistic of processes involved in SEAA methodology. First the basic of the theory of generalized nets is introduced, next SEAA methodology processes are modeled via the generalized nets the new model of SEAA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atanassov, K.: Generalized Index Matrices. Competes Rendus de l’Academie Bulgare des Sciences 40(11), 15–18 (1987)
Atanassov, K.: Generalized nets. World Scientific, Singapore (1991)
Atanassov, K.: Generalized Nets and Systems Theory. Prof. M. Drinov. Academic Publishing House, Sofia (1997)
Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “Nearest Neighbor” Meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)
Cybenko, G.: Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems 2(4), 303–314 (1989)
Fu, T.C.: A review on time series data mining. Engineering Applications of Artificial Intelligence 24, 164–181 (2011)
Keogh, E., Chakrabarti, K., Pazzani, M.: M. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series Databases. In: Proc. of ACM SIGMOD Conference on Management of Data, Santa Barbara, May 21-24, pp. 151–162 (2001)
Keogh, E., Pazzani, M.: Derivative dynamic time warping. In: Proceedings of the First SIAM International Conference on Data Mining, Chicago, USA (2001)
Krawczak, M.: Multilayer Neural Systems and Generalized Net Models. Ac. Publ. House EXIT, Warsaw (2003)
Krawczak, M.: Multilayer Neural Networks – Generalized Net perspective. Springer (2013)
Krawczak, M., Szkatuła, G.: On decision rules application to time series classification. In: Atanassov, K.T., et al. (eds.) Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Ac. Publ. House EXIT (2008)
Krawczak, M., Szkatuła, G.: Time series envelopes for classification. In: IEEE Intelligent Systems Conference, July 7-9 (2010a)
Krawczak, M., Szkatuła, G.: On time series envelopes for classification problems. In: Atanassov, K.T., et al. (eds.) Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. II. SRI PAS, Warsaw (2010b)
Krawczak, M., Szkatuła, G.: Dimensionality reduction for time series. Case studies of the Polish Association of Knowledge 31, 32–45 (2010c)
Krawczak, M., Szkatuła, G.: A hybrid approach for dimension reduction in classification. Control and Cybernetics 40(2), 527–552 (2011)
Krawczak, M., Szkatuła, G.z.: A clustering algorithm based on distinguishability for nominal attributes. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 120–127. Springer, Heidelberg (2012)
Krawczak, M., Szkatuła, G.: Dimension reduction of time series for the Clustering Problem. In: Atanassov, K.T., Homenda, W., Hryniewicz, O., Kacprzyk, J., Krawczak, M., Nahorski, Z., Szmidt, E., Zadrożny, S. (eds.) New Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. II: Applications, pp. 101–110. SRI PAS, Warsaw (2012b)
Krawczak, M., Szkatuła, G.: Nominal Time Series Representation for the Clustering Problem. In: IEEE 6th International Conference “Intelligent Systems“, Sofia, pp. 182–187 (2012)
Krawczak, M., Szkatuła, G.z.: On perturbation measure of clusters: Application. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 176–183. Springer, Heidelberg (2013)
Krawczak, M., Szkatuła, G.: A New Measure of Groups Perturbation. In: IFSA World Congress, pp. 1291–1296 (2013b)
Krawczak, M., Szkatuła, G.: An approach to dimensionality reduction in time series. Information Sciences 260, 15–36 (2014)
Lin, J., Keogh, E., Patel, E.P., Lonardi, S.: Finding motifs in time series. In: 2nd Workshop on Temporal Data Mining, the 8th ACM International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, pp. 53–68 (2002)
Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based Classification of Time-series Data. International Journal of Computer Research, 49–61 (2001)
Oja, E.: Principal components, minor components and linear neural networks. Neural Networks 5, 927–935 (1992)
Radeva, V., Krawczak, M., Choy, E.: Review and Bibliography on Generalized Nets Theory and Applications. Advanced Studies in Contemporary Mathematics 4(2), 173–199 (2002)
Shahabi, C., Tian, X., Zhao, W.: TSA-tree: A wavelet-based approach to improve the efficiency of multi-level surprise and trend queries. In: Proceedings of the 12th International Conference on Scientific and Statistical Database Management, Berlin, pp. 55–68 (2000)
Fu, T.-C.: A review on time series data mining. Engineering Applications of Artificial Intelligence 24, 164–181 (2011)
Yang, Q., Wu, X.: 10 Challenging problems in data mining research. International Journal of Information Technology and Decision Making 5(4), 597–604 (2005)
Wang, B.: A New Clustering Algorithm on Nominal Data Sets. In: Proceedings of International MultiConference of Engineers and Computer Scientists, IMECS 2010, Hong Kong, March 17-19 (2010)
Wu, Y., Chang, E.Y.: Distance-function design and fusion for sequence data. In: CIKM 2004, pp. 324–333 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Krawczak, M., Szkatuła, G. (2015). Generalized Nets Model of Dimensionality Reduction in Time Series. In: Filev, D., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 323. Springer, Cham. https://doi.org/10.1007/978-3-319-11310-4_74
Download citation
DOI: https://doi.org/10.1007/978-3-319-11310-4_74
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11309-8
Online ISBN: 978-3-319-11310-4
eBook Packages: EngineeringEngineering (R0)