Abstract
In this paper, we introduce a flexible consensus reaching process when agents evaluate the alternatives through linguistic expressions formed by a linguistic term, when they are confident on their opinions, or by several consecutive linguistic terms, when they hesitate. Taking into account an appropriate metric on the set of linguistic expressions and an aggregation function, a degree of consensus is obtained for each alternative. An overall degree of consensus is obtained by combining the degrees of consensus on the alternatives by means of an aggregation function. If that overall degree of consensus reaches a previously fixed threshold, then a voting system is applied. Otherwise, a moderator initiates a consensus reaching process by inviting some agents to modify their assessments in order to increase the consensus.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agell, N., Sánchez, G., Sánchez, M., Ruiz, F.J.: Selecting the best taste: a group decision-making application to chocolates design. In: Proceedings of the 2013 IFSA-NAFIPS Joint Congress, Edmonton, pp. 939–943 (2013)
Alcalde-Unzu, J., Vorsatz, M.: Measuring the cohesiveness of preferences: an axiomatic analysis. Social Choice and Welfare 41, 965–988 (2013)
Alcantud, J.C.R., de Andrés, R., Cascón, J.M.: On measures of cohesiveness under dichotomous opinions: some characterizations of Approval Consensus Measures. Information Sciences 240, 45–55 (2013)
Balinski, M., Laraki, R.: A theory of measuring, electing and ranking. Proceedings of the National Academy of Sciences of the United States of America 104, 8720–8725 (2007)
Balinski, M., Laraki, R.: Majority Judgment. Measuring, Ranking, and Electing. The MIT Press, Cambridge (2011)
Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. STUDFUZZ, vol. 221. Springer, Heidelberg (2007)
Bordogna, G., Fedrizzi, M., Pasi, G.: A linguistic modeling of consensus in group decision making based on OWA operators. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 27, 126–133 (1997)
Bosch, R.: Characterizations of Voting Rules and Consensus Measures. Ph. D. Dissertation, Tilburg University (2005)
Cabrerizo, F.J., Moreno, J.M., Pérez, I.J., Herrera-Viedma, E.: Analyzing consensus approaches in fuzzy group decision making: advantages and drawbacks. Soft Computing 14, 451–463 (2010)
Cabrerizo, F.J., Pérez, I.J., Herrera-Viedma, E.: Managing the consensus in group decision making in an unbalanced fuzzy linguistic context with incomplete information. Knowledge-Based Systems 23, 169–181 (2010)
Eklund, P., Rusinowska, A., de Swart, H.: Consensus reaching in committees. European Journal of Operational Research 178, 185–193 (2007)
Erdamar, B., García-Lapresta, J.L., Pérez-Román, D., Sanver, M.R.: Measuring consensus in a preference-approval context. Information Fusion 17, 14–21 (2014)
Falcó, E., García-Lapresta, J.L., Roselló, L.: Aggregating imprecise linguistic expressions, in: P. Guo and W. Pedrycz (Eds.), Human-Centric Decision-Making Models for Social Sciences. Springer-Verlag, Berlin, pp. 97-113 (2014)
Falcó, E., García-Lapresta, J.L., Roselló, L.: Allowing agents to be imprecise: A proposal using multiple linguistic terms. Information Sciences 258, 249–265 (2014)
Fedrizzi, M., Kacprzyk, J., Nurmi, H.: Consensus degrees under fuzzy majorities and fuzzy preferences using OWA (ordered weighted average) operators. Control and Cybernetics 22, 71–80 (1993)
Fedrizzi, M., Kacprzyk, J., Owsińnski, J.W., Zadrozny, S.: Consensus reaching via a GDSS with fuzzy majority and clustering of preference profiles. Annals of Operations Research 51, 127–139 (1994)
Fedrizzi, M., Kacprzyk, J., Zadrozny, S.: An interactive multi-user decision support system for consensus reaching processes using fuzzy logic with linguistic quantifiers. Decision Support Systems 4, 313–327 (1988)
García-Lapresta, J.L.: Favoring consensus and penalizing disagreement in group decision making. Journal of Advanced Computational Intelligence and Intelligent Informatics 12(5), 416–421 (2008)
García-Lapresta, J.L., Aldavero, C., de Castro, S.: A linguistic approach to multi-criteria and multi-expert sensory analysis. In: Laurent, A., Strauss, O., Bouchon-Meunier, B., Yager, R.R. (eds.) IPMU 2014, Part II. CCIS, vol. 443, pp. 586–595. Springer, Heidelberg (2014)
García-Lapresta, J.L., Pérez-Román, D.: Measuring consensus in weak orders. In: Herrera-Viedma, E., García-Lapresta, J.L., Kacprzyk, J., Fedrizzi, M., Nurmi, H., Zadrożny, S. (eds.) Consensual Processes. STUDFUZZ, vol. 267, pp. 213–234. Springer, Heidelberg (2011)
García-Lapresta, J.L., Pérez-Román, D.: Consensus-based clustering under hesitant qualitative assessments. Fuzzy Sets and Systems (in press), doi:10.1016/j.fss, 05.0040165-0114
Gini, C.: Variabilità e Mutabilità. Tipografia di Paolo Cuppini, Bologna (1912)
Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, Cambridge (2009)
Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: A model of consensus in group decision making under linguistic assessments. Fuzzy Sets and Systems 78, 73–87 (1996)
Herrera, F., Herrera-Viedma, E., Verdegay, J.L.: Linguistic measures based on fuzzy coincidence for reaching consensus in group decision making. International Journal of Approximate Reasoning 16, 309–334 (1997)
Herrera-Viedma, E., Herrera, F., Chiclana, F.: A consensus model for multiperson decision making with different preference structures. IEEE Transactions on Systems, Man and Cybernetics - Part A: Systems and Humans 32, 394–402 (2002)
Kacprzyk, J., Fedrizzi, M.: ‘Soft’ consensus measures for monitoring real consensus reaching processes under fuzzy preferences. Control and Cybernetics 15, 309–323 (1986)
Kacprzyk, J., Fedrizzi, M.: A ‘soft’ measure of consensus in the setting of partial (fuzzy) preferences. European Journal of Operational Research 34, 315–325 (1988)
Kacprzyk, J., Fedrizzi, M.: A ‘human-consistent’ degree of consensus based on fuzzy logic with linguistic quantifiers. Mathematical Social Sciences 18, 275–290 (1989)
Kacprzyk, J., Fedrizzi, M., Nurmi, H.: Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems 49, 21–31 (1992)
Martínez, L., Montero, J.: Challenges for improving consensus reaching process in collective decisions. New Mathematics and Natural Computation 3, 203–217 (2007)
Martínez-Panero, M.: Consensus perspectives: Glimpses into theoretical advances and applications. In: Herrera-Viedma, E., García-Lapresta, J.L., Kacprzyk, J., Fedrizzi, M., Nurmi, H., Zadrożny, S. (eds.) Consensual Processes. STUDFUZZ, vol. 267, pp. 179–193. Springer, Heidelberg (2011)
Mata, F., Martínez, L., Herrera-Viedma, E.: An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context. IEEE Transactions on Fuzzy Systems 17, 279–290 (2009)
Mata, F., Pérez, L.G., Zhou, S.M., Chiclana, F.: Type-1 OWA methodology to consensus reaching processes in multi-granular linguistic contexts. Knowledge-Based Systems 58, 11–22 (2014)
Palomares, I., Estrella, F.J., Martínez, L., Herrera, F.: Consensus under a fuzzy context: taxonomy, analysis framework AFRYCA and experimental case of study. Information Fusion 20, 252–271 (2014)
Palomares, I., Martínez, L.: A semi-supervised multi-agent system model to support consensus reaching processes. IEEE Transactions on Fuzzy Systems (in press), doi:10.1109/TFUZZ.2013.2272588
Palomares, I., Martínez, L., Herrera, F.: A consensus model to detect and manage noncooperative behaviors in large-scale group decision making. IEEE Transactions on Fuzzy Systems 22(3), 516–530 (2014)
Pérez, I.J., Cabrerizo, F.J., Alonso, S., Herrera-Viedma, E.: A new consensus model for group decision making problems with non homogeneous experts. IEEE Transactions on Systems, Man, and Cybernetics: Systems 44, 494–498 (2014)
Pérez, I.J., Wikström, R., Mezei, J., Carlsson, C., Herrera-Viedma, E.: A new consensus model for group decision making using fuzzy ontology. Soft Computing 17, 1617–1627 (2013)
Roselló, L., Prats, F., Agell, N., Sánchez, M.: Measuring consensus in group decisions by means of qualitative reasoning. International Journal of Approximate Reasoning 51, 441–452 (2010)
Roselló, L., Prats, F., Agell, N., Sánchez, M.: A qualitative reasoning approach to measure consensus. In: Herrera-Viedma, E., García-Lapresta, J.L., Kacprzyk, J., Fedrizzi, M., Nurmi, H., Zadrożny, S. (eds.) Consensual Processes. STUDFUZZ, vol. 267, pp. 235–261. Springer, Heidelberg (2011)
Roselló, L., Sánchez, M., Agell, N., Prats, F., Mazaira, F.A.: Using consensus and between generalized multiattribute linguistic assessments for group decision-making. Information Fusion 17, 83–92 (2014)
Saint, S., Lawson, J.R.: Rules for Reaching Consensus. A Modern Approach to Decision Making. Jossey-Bass, San Francisco (1994)
Spillman, B., Bezdek, J., Spillman, R.: Development of an instrument for the dynamic measurement of consensus. Communication Monographs 46, 1–12 (1979)
Torra, V., Narukawa, Y.: Modeling Decisions: Information Fusion and Aggregation Operators. Springer, Berlin (2007)
Travé-Massuyès, L., Dague, P. (eds.): Modèles et Raisonnements Qualitatifs. Hermes Science, Paris (2003)
Travé-Massuyès, L., Piera, N.: The orders of magnitude models as qualitative algebras. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence, Detroit (1989)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
García-Lapresta, J.L., Pérez-Román, D., Falcó, E. (2015). Consensus Reaching Processes under Hesitant Linguistic Assessments. In: Angelov, P., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-319-11313-5_24
Download citation
DOI: https://doi.org/10.1007/978-3-319-11313-5_24
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11312-8
Online ISBN: 978-3-319-11313-5
eBook Packages: EngineeringEngineering (R0)