Abstract
The paper considers the generalized net description of essential attributes generator which is one of the main part of SEAA method developed for dimensionality reduction of time series. SEAA method (Symbolic Essential Attributes Approximation) (Krawczak and Szkatuła, 2014) was developed to reduce the dimensionality of multidimensional time series by generating a new nominal representation of the original data series. The approach is based on the concept of data series envelopes and essential attributes obtained by a multilayer neural network. The considered neural network architecture is based on Cybenko’s theorem and consists of two three-layer neural networks. In this paper the generalized net description of this part of SEAA method is developed in order to show the beauty of generalized nets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atanassov, K.: Generalized nets. World Scientific, Singapore (1991)
Atanassov, K.: Generalized Nets and Systems Theory. Prof. M. Drinov. Academic Publishing House, Sofia (1997)
Atanassov, K.: Generalized Index Matrices. Competes Rendus de l’Academie Bulgare des Sciences 40(11), 15–18 (1987)
Cybenko, G.: Approximations by superpositions of sigmoidal functions. Mathematics of Control, Signals, and Systems 2(4), 303–314 (1989)
Krawczak, M.: Multilayer Neural Systems and Generalized Net Models. Ac. Publ. House EXIT, Warsaw (2003)
Krawczak, M.: Multilayer Neural Networks – Generalized Net perspective. Springer (2013)
Krawczak, M., Szkatuła, G.: On decision rules application to time series classification. In: Atanassov, K.T., et al. (eds.) Advances in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics, Ac. Publ. House EXIT (2008)
Krawczak, M., Szkatuła, G.: Time series envelopes for classification. In: IEEE Intelligent Systems Conference, London, July 7-9 (2010a)
Krawczak, M., Szkatuła, G.: On time series envelopes for classification problems. In: Atanassov, K.T., et al. (eds.) Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. II. SRI PAS, Warsaw (2010b)
Krawczak, M., Szkatuła, G.: Dimensionality reduction for time series. Case Studies of the Polish Association of Knowledge 31, 32–45 (2010c)
Krawczak, M., Szkatuła, G.: A hybrid approach for dimension reduction in classification. Control and Cybernetics 40(2), 527–552 (2011)
Krawczak, M., Szkatuła, G.z.: A clustering algorithm based on distinguishability for nominal attributes. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 120–127. Springer, Heidelberg (2012a)
Krawczak, M., Szkatuła, G.: Dimension reduction of time series for the Clustering Problem. In: Atanassov, K.T., Homenda, W., Hryniewicz, O., Kacprzyk, J., Krawczak, M., Nahorski, Z., Szmidt, E., Zadrożny, S. (eds.) New Developments in Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets and Related Topics. II: Applications, pp. 101–110. SRI PAS, Warsaw (2012b)
Krawczak, M., Szkatuła, G.: Nominal Time Series Representation for the Clustering Problem. In: IEEE 6th International Conference Intelligent Systems, Sofia, pp. 182–187 (2012c)
Krawczak, M., Szkatuła, G.: An approach to dimensionality reduction in time series. Information Sciences 260, 15–36 (2014)
Oja, E.: Principal components, minor components and linear neural networks. Neural Networks 5, 927–935 (1992)
Radeva, V., Krawczak, M., Choy, E.: Review and Bibliography on Generalized Nets Theory and Applications. Advanced Studies in Contemporary Mathematics 4(2), 173–199 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Krawczak, M., Szkatuła, G. (2015). Generalized Net Description of Essential Attributes Generator in SEAA Method. In: Angelov, P., et al. Intelligent Systems'2014. Advances in Intelligent Systems and Computing, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-319-11313-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-319-11313-5_57
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11312-8
Online ISBN: 978-3-319-11313-5
eBook Packages: EngineeringEngineering (R0)