Abstract
The article describes a method for segmentation and analysis of small blood hand vessels in 3D magnetic resonance contrast angiography data obtained with collaboration of Department of Diagnostic Imaging, Medical University of Lodz. The main algorithm used for vasculature extraction implements a 3D version of level-set method based on Chan-Vese mathematical model. The image analysis was performed for two different contrast agents. Preliminary segmentation results were presented and discussed, along with further research plans.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Corot, C., Violas, X., Robert, P., Gagneur, G., Port, M.: Comparison of different types of blood pool agents (P792, MS325, USPIO) in a rabbit MR angiography-like protocol. Invest. Radiol. 38(6), 311–319 (2003)
Gutzeit, A., et al.: Clinical experience in timed arterial compression contrast-enhanced magnetic resonance angiography of the hand. CA Radiologist Journal 61, 206–216 (2010)
Kassamali, R.H., Hoey, E., Ganeshan, A., Littlehales, T.: A comparative analysis of noncontrast flow-spoiled versus contrast-enhanced magnetic resonance angiography for evaluation of peripheral arterial disease. Diagnostic and Interventional Radiology 19(2), 119–125 (2013)
Nikolaou, K., Kramer, H., Grosse, C., Clevert, D., Dietrich, O., Hartmann, M.: High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology 241(3), 861–872 (2006)
Wang, A.S., Bech, F., Lee, J., Taylor, C.A., Liang, D.H.: Developing an arterial bleed detection algorithm for diagnostic ultrasound. In: Proc. of IEEE International Ultrasonics Symposium, IUS 2008, Beijing, China, November 2-5, pp. 1627–1630 (2008)
Strzelecki, M., Szczypinski, P., Materka, A., Klepaczko, A.: A software tool for automatic classification and segmentation of 2D/3D medical images. Nuclear Instruments & Methods in Physics Research A 702, 137–140 (2013)
Lesage, D., Angelini, E., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes. Medical Image Analysis 13, 819–845 (2009)
Strzelecki, M., Szczypinski, P., Materka, A., Kocinski, M., Sankowski, A.: Level-set segmentation of noisy 3D images of numerically simulated blood vessels and vascular trees. In: Proceedings of 6th International Symposium on Image and Signal Processing and Analysis, Salzburg, Austria, September 16-18, pp. 742–747 (2009)
Chan, T.F., Vese, L.A.: Active Contours Without Edges. IEEE Transaction on Image Processing 10(2), 266–277 (2001)
Getreuer, P.: Chan-Vese Segmentation. Image Processing on Line 2, 214–224 (2012)
Suri, J.S., Liu, K., Singh, S., Laxminarayan, S.N., Zeng, X., Reden, L.: Shape Recovery Algorithms Using Level Sets in 2-D/3-D Medical Imagery: A State-of-the-Art Review. IEEE Transactions on Information Technology in Biomedicine 6(1), 8–28 (2002)
ImageJ official website, http://imagej.nih.gov/ij/ (visited April 10, 2014)
Forkert, N.D., Schmidt-Richberg, A., Fiehler, J., Illies, T., Möller, D., Säring, D., Handels, H., Ehrhardt, J.: 3D cerebrovascular segmentation combining fuzzy vessel enhancement and level-sets with anisotropic energy weights. Magnetic Resonance Imaging 31, 262–271 (2013)
Klepaczko, A., Szczypinski, P., Dwojakowski, G., Strzelecki, M., Materka, A.: Computer Simulation of Magnetic Resonance Angiography Imaging. Model Description and Validation 9(4) (April 2014), doi:10.1371/journal.pone.0093689
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Strzelecki, M., Woźniak, T., Olszycki, M., Szymczyk, K., Stefańczyk, L. (2014). Analysis of the Hand’s Small Vessels Based on MR Angiography and Level-Set Approach. In: Chmielewski, L.J., Kozera, R., Shin, BS., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2014. Lecture Notes in Computer Science, vol 8671. Springer, Cham. https://doi.org/10.1007/978-3-319-11331-9_74
Download citation
DOI: https://doi.org/10.1007/978-3-319-11331-9_74
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11330-2
Online ISBN: 978-3-319-11331-9
eBook Packages: Computer ScienceComputer Science (R0)