Skip to main content

Abstract

The paper reports on evaluation of Russian community question answering (CQA) data in health domain. About 1,500 question–answer pairs were manually evaluated by medical professionals, in addition automatic evaluation based on reference disease–medicine pairs was performed. Although the results of the manual and automatic evaluation do not fully match, we find the method still promising and propose several improvements. Automatic processing can be used to dynamically monitor the quality of the CQA content and to compare different data sources. Moreover, the approach can be useful for symptomatic surveillance and health education campaigns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Internet kak istochnik informazii o zdorov’e, medizine i lekarstvennykh preparatakh (Internet as a source of information about health, medicine, and medication). Synovate Comcon Healthcare (April 2014), http://www.comcon-2.ru/download.asp?544

  2. Adamic, L.A., Zhang, J., Bakshy, E., Ackerman, M.S.: Knowledge sharing and yahoo answers: Everyone knows something. In: Proceedings of WWW 2008, pp. 665–674 (2008)

    Google Scholar 

  3. Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in social media. In: Proceedings of WSDM 2008, pp. 183–194 (2008)

    Google Scholar 

  4. Agichtein, E., Liu, Y., Bian, J.: Modeling information-seeker satisfaction in community question answering. ACM Trans. Knowl. Discov. Data 3(2), 10:1–10:27 (2009)

    Google Scholar 

  5. Beloborodov, A., Kuznetsov, A., Braslavski, P.: Characterizing health-related community question answering. In: Serdyukov, P., Braslavski, P., Kuznetsov, S.O., Kamps, J., Rüger, S., Agichtein, E., Segalovich, I., Yilmaz, E. (eds.) ECIR 2013. LNCS, vol. 7814, pp. 680–683. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Bhattacharya, S., Tran, H., Srinivasan, P.: Discovering health beliefs in twitter. In: AAAI Fall Symposium on Information Retrieval and Knowledge Discovery in Biomedical Text (2012)

    Google Scholar 

  7. Cartright, M.A., White, R.W., Horvitz, E.: Intentions and attention in exploratory health search. In: Proceedings of SIGIR 2011, pp. 65–74 (2011)

    Google Scholar 

  8. Correa, D., Sureka, A.: Fit or unfit: Analysis and prediction of ‘closed questions’ on stack overflow. In: Proceedings of COSN 2013, pp. 201–212 (2013)

    Google Scholar 

  9. Fox, S., Duggan, M.: Health online 2013 (January 2013), http://www.pewinternet.org/2013/01/15/health-online-2013/

  10. Harper, F.M., Moy, D., Konstan, J.A.: Facts or friends?: Distinguishing informational and conversational questions in social q&a sites. In: Proceedings of CHI 2009, pp. 759–768 (2009)

    Google Scholar 

  11. Kim, S., Pinkerton, T., Ganesh, N.: Assessment of h1n1 questions and answers posted on the web. American Journal of Infection Control 40(3), 211–217 (2012)

    Article  Google Scholar 

  12. Lampos, V., De Bie, T., Cristianini, N.: Flu Detector - Tracking Epidemics on Twitter. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 599–602. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Lezina, G., Kuznezov, A., Braslavski, P.: Learning to predict closed questions on stack overflow. In: Proceedings of Kazan Federal University (in press, 2014)

    Google Scholar 

  14. Li, B., Jin, T., Lyu, M.R., King, I., Mak, B.: Analyzing and predicting question quality in community question answering services. In: Proceedings of WWW 2012 (Companion volume), pp. 775–782 (2012)

    Google Scholar 

  15. Mendes Rodrigues, E., Milic-Frayling, N.: Socializing or knowledge sharing?: Characterizing social intent in community question answering. In: Proceedings of CIKM 2009, pp. 1127–1136 (2009)

    Google Scholar 

  16. Oh, S., Worrall, A., Yi, Y.J.: Quality evaluation of health answers in yahoo! answers: A comparison between experts and users. In: Proceedings of the American Society for Information Science and Technology, vol. 48, pp. 1–3 (2011)

    Google Scholar 

  17. Paul, M., Dredze, M.: You are what you tweet: Analyzing twitter for public health. In: Proceedings of ICWSM 2011 (2011)

    Google Scholar 

  18. Shah, C., Pomerantz, J.: Evaluating and predicting answer quality in community qa. In: Proceedings of SIGIR 2010, pp. 411–418 (2010)

    Google Scholar 

  19. Sondhi, P., Gupta, M., Zhai, C., Hockenmaier, J.: Shallow information extraction from medical forum data. In: Proceedinhs of COLING 2010 (Posters), pp. 1158–1166 (August 2010)

    Google Scholar 

  20. Wong, W., Thangarajah, J., Padgham, L.: Health conversational system based on contextual matching of community-driven question-answer pairs. In: Proceedings of CIKM 2011, pp. 2577–2580 (2011)

    Google Scholar 

  21. Zhang, Y.: Contextualizing consumer health information searching: An analysis of questions in a social q&a community. In: Proceedings of IHI 2010, pp. 210–219 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Beloborodov, A., Braslavski, P., Driker, M. (2014). Towards Automatic Evaluation of Health-Related CQA Data. In: Kanoulas, E., et al. Information Access Evaluation. Multilinguality, Multimodality, and Interaction. CLEF 2014. Lecture Notes in Computer Science, vol 8685. Springer, Cham. https://doi.org/10.1007/978-3-319-11382-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11382-1_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11381-4

  • Online ISBN: 978-3-319-11382-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics