Abstract
Abbreviations pose a challenge for information extraction systems. In clinical text, abbreviations are abundant, as this type of documentation is written under time-pressure. We report work on characterizing abbreviations in Swedish clinical text and the development of SCAN: a Swedish Clinical Abbreviation Normalizer, which is built for the purpose of improving information access systems in the clinical domain. The clinical domain includes several subdomains with differing vocabularies depending on the nature of the specialist work, and adaption of NLP-tools may consequently be necessary. We extend and adapt SCAN, and evaluate on two different clinical subdomains: emergency department (ED) and radiology (X-ray). Overall final results are 85% (ED) and 83% (X-ray) F1-measure on the task of abbreviation identification. We also evaluate coverage of abbreviation expansion candidates in existing lexical resources, and create two new, freely available, lexicons with abbreviations and their possible expansions for the two clinical subdomains.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proc. AMIA Symp., pp. 17–21 (2001)
Aronson, A., Lang, F.M.: An overview of MetaMap: historical perspective and recent advances. Journal of the American Medical Informatics Association: JAMIA 17(3), 229–236 (2010)
Carlsson, E., Dalianis, H.: Influence of Module Order on Rule-Based De-identification of Personal Names in Electronic Patient Records Written in Swedish. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation, LREC 2010, Valletta, Malta, May 19–21, pp. 3071–3075 (2010)
Cederblom, S.: Medicinska förkortningar och akronymer. Studentlitteratur (2005) (in Swedish)
Dalianis, H., Hassel, M., Henriksson, A., Skeppstedt, M.: Stockholm EPR Corpus: A Clinical Database Used to Improve Health Care. In: Nugues, P. (ed.) Proc. 4th SLTC, Lund, October 25–26, pp. 17–18 (2012), http://nlp.lacasahassel.net/publications/dalianisetal12sltc.pdf
Dannélls, D.: Automatic acronym recognition. In: Proceedings of the 11th Conference on European Chapter of the Association for Computational Linguistics, EACL (2006)
Friedman, C., Alderson, P.O., Austin, J.H., Cimino, J.J., Johnson, S.B.: A general natural-language text processor for clinical radiology. J. Am. Med. Inform. Assoc. 1(2), 161–174 (1994)
Friedman, C., Kra, P., Rzhetsky, A.: Two biomedical sublanguages: a description based on the theories of Zellig Harris. Journal of Biomedical Informatics 35(4), 222–235 (2002)
Henriksson, A., Moen, H., Skeppstedt, M., Daudaravicius, V., Duneld, M.: Synonym Extraction and Abbreviation Expansion with Ensembles of Semantic Spaces. Journal of Biomedical Semantics 5, 6 (2014)
Isenius, N., Velupillai, S., Kvist, M.: Initial Results in the Development of SCAN: a Swedish Clinical Abbreviation Normalizer. In: Proceedings of the CLEF 2012 Workshop on Cross-Language Evaluation of Methods, Applications, and Resources for eHealth Document Analysis - CLEFeHealth2012. CLEF, Rome, Italy (September 2012)
Kvist, M., Velupillai, S.: Professional Language in Swedish Radiology Reports – Characterization for Patient-Adapted Text Simplification. In: Proceedings of the Scandinavian Conference on Health Informatics 2013, Linköping University Electronic Press, Linköpings Universitet, Copenhagen, Denmark (2013), http://www.ep.liu.se/ecp/091/012/ecp13091012.pdf
Larkey, L., Ogilvie, P., Price, M., Tamilio, B.: Acrophile: An Automated Acronym Extractor and Server. In: Proceedings of the Fifth ACM Conference on Digital Libraries, pp. 205–214 (2000)
Liu, H., Lussier, Y.A., Friedman, C.: Disambiguating Ambiguous Biomedical Terms in Biomedical Narrative Text: An Unsupervised Method. Journal of Biomedical Informatics 34, 249–261 (2001)
Lövestam, E., Velupillai, S., Kvist, M.: Abbreviations in Swedish Clinical Text – use by three professions. In: Proc. MIE 2014 (to be presented, 2014)
Mowery, D., South, B., Christensen, L., Murtola, L.M., Salanterä, S., Suominen, S., Martinez, D., Elhadad, N., Pradhan, S., Savova, G., Chapman, W.: Task 2: Share/clef ehealth evaluation lab 2013 (2013), http://www.clef-initiative.eu/documents/71612/599e4736-2667-4f59-9ccb-ab5178cae3c5
Mowery, D.L., South, B.R., Leng, J., Murtola, L., Danielsson-Ojala, R., Salanterä, S., Chapman, W.: Creating a Reference Standard of Acronym and Abbreviation Annotations for the ShARe/CLEF eHealth Challenge 2013. In: AMIA Annu. Symp. Proc. (2013)
Östling, R.: Stagger: an Open-Source Part of Speech Tagger for Swedish. Northern European Journal of Language Technology 3, 1–18 (2013)
Pakhomov, S., Pedersen, T., Chute, C.G.: Abbreviation and Acronym Disambiguation in Clinical Discourse. In: Proc. AMIA 2005, pp. 589–593 (2005)
Park, Y., Byrd, R.: Hybrid text mining for finding abbreviations and their definitions. In: Proceedings of Empirical Methods in Natural Language Processing, pp. 126–133 (2001)
Savova, G., Masanz, J., Ogren, P., Zheng, J., Sohn, S., Kipper-Schuler, K., Chute, C.: Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications. Journal of the American Medical Informatics Association 17(5), 507–513 (2010)
Skeppstedt, M., Kvist, M., Dalianis, H.: Rule-based Entity Recognition and Coverage of SNOMED CT in Swedish Clinical Text. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC 2012, Istanbul, Turkey, May 23–25, pp. 1250–1257 (2012)
Smith, K.: Treating a case of the mumbo jumbos: What linguistic features characterize Swedish electronic health records? Master’s thesis, Dept. of Linguistics and Philology, Uppsala University, Sweden (2014)
Tengstrand, L., Megyesi, B., Henriksson, A., Duneld, M., Kvist, M.: Eacl - expansion of abbreviations in clinical text. In: Proceedings of the 3rd Workshop on Predicting and Improving Text Readability for Target Reader Populations (PITR), pp. 94–103. Association for Computational Linguistics, Gothenburg (2014), http://www.aclweb.org/anthology/W14-1211
Wu, Y., Denny, J.C., Rosenbloom, S.T., Miller, R.A., Giuse, D.A., Xu, H.: A comparative study of current clinical natural language processing systems on handling abbreviations in discharge summaries. In: AMIA Annu. Symp. Proc., pp. 997–1003 (2012)
Wu, Y., Rosenbloom, S.T., Denny, J.C., Miller, R.A., Mani, S., Giuse, D.A., Xu, H.: Detecting Abbreviations in Discharge Summaries using Machine Learning Methods. In: AMIA Annu. Symp. Proc., pp. 1541–1549 (2011)
Xu, H., Stetson, P.D., Friedman, C.: A Study of Abbreviations in Clinical Notes. In: Proc. AMIA 2007, pp. 821–825 (2007)
Yeates, S.: Automatic Extraction of Acronyms from Text. In: Proc. Third New Zealand Computer Science Research Students’ Conference, pp. 117–124 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Kvist, M., Velupillai, S. (2014). SCAN: A Swedish Clinical Abbreviation Normalizer. In: Kanoulas, E., et al. Information Access Evaluation. Multilinguality, Multimodality, and Interaction. CLEF 2014. Lecture Notes in Computer Science, vol 8685. Springer, Cham. https://doi.org/10.1007/978-3-319-11382-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-11382-1_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11381-4
Online ISBN: 978-3-319-11382-1
eBook Packages: Computer ScienceComputer Science (R0)