Skip to main content

Min-BDeu and Max-BDeu Scores for Learning Bayesian Networks

  • Conference paper
Probabilistic Graphical Models (PGM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8754))

Included in the following conference series:

  • 2189 Accesses

Abstract

This work presents two new score functions based on the Bayesian Dirichlet equivalent uniform (BDeu) score for learning Bayesian network structures. They consider the sensitivity of BDeu to varying parameters of the Dirichlet prior. The scores take on the most adversary and the most beneficial priors among those within a contamination set around the symmetric one. We build these scores in such way that they are decomposable and can be computed efficiently. Because of that, they can be integrated into any state-of-the-art structure learning method that explores the space of directed acyclic graphs and allows decomposable scores. Empirical results suggest that our scores outperform the standard BDeu score in terms of the likelihood of unseen data and in terms of edge discovery with respect to the true network, at least when the training sample size is small. We discuss the relation between these new scores and the accuracy of inferred models. Moreover, our new criteria can be used to identify the amount of data after which learning is saturated, that is, additional data are of little help to improve the resulting model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995)

    MATH  Google Scholar 

  2. Barlett, M., Cussens, J.: Advances in Bayesian network learning using integer programming. In: Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, UAI 2013, pp. 182–191 (2013)

    Google Scholar 

  3. Cussens, J.: Bayesian network learning with cutting planes. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence, UAI 2011, pp. 153–160. AUAI Press, Barcelona (2011)

    Google Scholar 

  4. de Campos, C.P., Ji, Q.: Efficient structure learning of Bayesian networks using constraints. Journal of Machine Learning Research 12, 663–689 (2011)

    MATH  Google Scholar 

  5. de Campos, C.P., Zeng, Z., Ji, Q.: Structure learning of Bayesian networks using constraints. In: Proceedings of the 26th International Conference on Machine Learning, ICML 2009, pp. 113–120. Omnipress, Montreal (2009)

    Google Scholar 

  6. Jaakkola, T., Sontag, D., Globerson, A., Meila, M.: Learning Bayesian Network Structure using LP Relaxations. In: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, AISTATS 2010, pp. 358–365 (2010)

    Google Scholar 

  7. Niinimäki, T., Koivisto, M.: Annealed importance sampling for structure learning in Bayesian networks. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 1579–1585. AAAI Press (2013)

    Google Scholar 

  8. Parviainen, P., Koivisto, M.: Exact structure discovery in Bayesian networks with less space. In: Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, UAI 2009, pp. 436–443. AUAI Press (2009)

    Google Scholar 

  9. Parviainen, P., Koivisto, M.: Finding optimal Bayesian networks using precedence constraints. Journal of Machine Learning Research 14, 1387–1415 (2013)

    MathSciNet  Google Scholar 

  10. Yuan, C., Malone, B.: Learning optimal Bayesian networks: A shortest path perspective. Journal of Artificial Intelligence Research 48, 23–65 (2013)

    MATH  Google Scholar 

  11. Buntine, W.: Theory refinement on Bayesian networks. In: Proceedings of the 8th Conference on Uncertainty in Artificial Intelligence, UAI 1992, pp. 52–60. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  12. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  13. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Akaike, H.: A new look at the statistical model identification. IEEE Transactions on Automatic Control 19(6), 716–723 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. Brenner, E., Sontag, D.: Sparsityboost: A new scoring function for learning Bayesian network structure. In: Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence, UAI 2013, pp. 112–121. AUAI Press, Corvallis (2013)

    Google Scholar 

  16. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London (1991)

    Google Scholar 

  17. Silander, T., Kontkanen, P., Myllymäki, P.: On Sensitivity of the MAP Bayesian Network Structure to the Equivalent Sample Size Parameter. In: Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, UAI 2007, pp. 360–367 (2007)

    Google Scholar 

  18. Abellan, J., Moral, S.: New score for independence based on the imprecise Dirichlet model. In: International Symposium on Imprecise Probability: Theory and Applications, ISIPTA 2005, SIPTA, pp. 1–10 (2005)

    Google Scholar 

  19. Cano, A., Gómez-Olmedo, M., Masegosa, A.R., Moral, S.: Locally averaged Bayesian Dirichlet metrics for learning the structure and the parameters of Bayesian networks. International Journal of Approximate Reasoning 54(4), 526–540 (2013)

    Article  MathSciNet  Google Scholar 

  20. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. MPS/SIAM Series on Optimization. SIAM (2001)

    Google Scholar 

  21. Spiegelhalter, D.J., Cowell, R.G.: In: Learning in probabilistic expert systems, pp. 447–466. Clarendon Press, Oxford (1992)

    Google Scholar 

  22. Binder, J., Koller, D., Russell, S., Kanazawa, K.: Adaptive probabilistic networks with hidden variables. Machine Learning 29 (1997)

    Google Scholar 

  23. Jensen, F.V., Kjærulff, U., Olesen, K.G., Pedersen, J.: Et forprojekt til et ekspertsystem for drift af spildevandsrensning (an expert system for control of waste water treatment — a pilot project). Technical report, Judex Datasystemer A/S, Aalborg, Denmark (1989) (in Danish)

    Google Scholar 

  24. Beinlich, I.A., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM Monitoring System: A Case Study with Two Probabilistic Inference Techniques for Belief Networks. In: Proceedings of the 2nd European Conference on Artificial Intelligence in Medicine. Lecture Notes in Medical Informatics, vol. 38, pp. 247–256. Springer, Heidelberg (1989)

    Google Scholar 

  25. Ide, J.S., Cozman, F.G.: Random generation of Bayesian networks. In: Bittencourt, G., Ramalho, G.L. (eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 366–375. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  26. Nagarajan, R., Scutari, M., Lèbre, S.: Bayesian Networks in R with Applications in Systems Biology. Use R! series. Springer (2013)

    Google Scholar 

  27. de Campos, C.P., Ji, Q.: Properties of Bayesian Dirichlet scores to learn Bayesian network structures. In: AAAI Conference on Artificial Intelligence, pp. 431–436. AAAI Press (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Scanagatta, M., de Campos, C.P., Zaffalon, M. (2014). Min-BDeu and Max-BDeu Scores for Learning Bayesian Networks. In: van der Gaag, L.C., Feelders, A.J. (eds) Probabilistic Graphical Models. PGM 2014. Lecture Notes in Computer Science(), vol 8754. Springer, Cham. https://doi.org/10.1007/978-3-319-11433-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11433-0_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11432-3

  • Online ISBN: 978-3-319-11433-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics