Skip to main content

Learning Bayesian Network Structures When Discrete and Continuous Variables Are Present

  • Conference paper
Probabilistic Graphical Models (PGM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8754))

Included in the following conference series:

Abstract

In any database, some fields are discrete and others continuous in each record. We consider learning Bayesian network structures when discrete and continuous variables are present. Thus far, most of the previous results assumed that all the variables are either discrete or continuous. We propose to compute a new Bayesian score for each subset of discrete and continuous variables, and to obtain a structure that maximizes the posterior probability given examples. We evaluate the proposed algorithm and make experiments to see that the error probability and Kullback-Leibler divergence diminish as n grows whereas the computation increases linearly in the logarithm of the number of bins in the histograms that approximate the density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Buntine, W.L.: Learning Classification Trees. Statistics and Computing 2, 63–73 (1991)

    Article  Google Scholar 

  2. Boettcher, S.G., Dethlefsen, C.: A Package for Learning Bayesian Networks. Journal of Statistical Software 8(20), 1–40 (2003), http://www.jstatsoft.org/v08/i20/

    Google Scholar 

  3. Billingsley, P.: Probability & Measure, 3rd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  4. Cai, H., Kulkarni, S., Verdú, S.: Universal divergence estimation for finite-alphabet sources. IEEE Trans. Information Theory 52(8), 3456–3475 (2006)

    Article  Google Scholar 

  5. Cooper, G.F., Herskovits, E.: A Bayesian Method for the Induction of Probabilistic Networks from Data. Machine Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, New York (1995)

    Google Scholar 

  7. Friedman, N., Goldszmidt, M.: Discretizing Continuous Attributes While Learning Bayesian Networks. In: International Conference on Machine Learning, pp. 157–165 (1996)

    Google Scholar 

  8. Heckerman, D., Geiger, D.: Learning Bayesian networks: A unification for discrete and Gaussian domains. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 274–284 (1995)

    Google Scholar 

  9. Hofmann, R., Tresp, V.: Discovering Structure in Continuous Variables Using Bayesian Networks. In: Advances in Neural Information Processing Systems, vol. 8. MIT Press, Cambridge (1996)

    Google Scholar 

  10. John, G., Langley, P.: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  11. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Statistics 22(1), 79–86 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kozlov, A.V., Koller, D.: Nonuniform Dynamic Discretization in Hybrid Networks. In: Uncertainty in Artificial Intelligence, pp. 314–325 (1997)

    Google Scholar 

  13. Krichevsky, R.E., Trofimov, V.K.: The Performance of Universal Encoding. IEEE Trans. Information Theory 27(2), 199–207 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lauritzen, S.L., Wermuth, N.: Graphical models for associations between variables, some of which are quantitative and some qualitative. Annals of Statistics 17, 31–57 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Monti, S., Cooper, G.F.: Learning Bayesian Belief Networks with Neural Network Estimators. In: Advances in Neural Information Processing Systems, vol. 8, pp. 578–584 (1996)

    Google Scholar 

  16. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  17. Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)

    Article  MATH  Google Scholar 

  18. Romero, V., Rumi, R., Salmeron, A.: Learning hybrid Bayesian networks using mixtures of truncated exponentials. International Journal of Approximate Reasoning 42, 54–68 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ryabko, B.: Prediction of random sequences and universal coding. Problems Inform. Transmission 24(2), 87–96 (1988)

    MathSciNet  MATH  Google Scholar 

  20. Ryabko, B.: Compression-Based Methods for Nonparametric Prediction and Estimation of Some Characteristics of Time Series. IEEE Trans. on Inform. Theory 55(9), 4309–4315 (2009)

    Article  MathSciNet  Google Scholar 

  21. Shenoy, P.P.: Two Issues in Using Mixtures of Polynomials for Inference in Hybrid Bayesian Networks. International Journal of Approximate Reasoning 53(5), 847–866 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. MIT Press (2000)

    Google Scholar 

  23. Suzuki, J.: On Strong Consistency of Model Selection in Classification. IEEE Trans. on Information Theory 52(11), 4767–4774 (2006)

    Google Scholar 

  24. Suzuki, J.: A Construction of Bayesian Networks from Databases on an MDL Principle. In: The Ninth Conference on Uncertainty in Artificial Intelligence, Washington D.C., pp. 266–273 (1993)

    Google Scholar 

  25. Suzuki, J.: The Universal Measure for General Sources and its Application to MDL/Bayesian Criteria. In: Data Compression Conference (one page abstract), Snowbird, Utah, p. 478 (2011)

    Google Scholar 

  26. Suzuki, J.: MDL/Bayesian Criteria based on Universal Coding/Measure. In: Dowe, D.L. (ed.) Solomonoff Festschrift. LNCS, vol. 7070, pp. 399–410. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Suzuki, J. (2014). Learning Bayesian Network Structures When Discrete and Continuous Variables Are Present. In: van der Gaag, L.C., Feelders, A.J. (eds) Probabilistic Graphical Models. PGM 2014. Lecture Notes in Computer Science(), vol 8754. Springer, Cham. https://doi.org/10.1007/978-3-319-11433-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11433-0_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11432-3

  • Online ISBN: 978-3-319-11433-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics