Abstract
We show that model-checking flat counter systems over CTL* (with arithmetical constraints on counter values) has the same complexity as the satisfiability problem for Presburger arithmetic. The lower bound already holds with the temporal operator EF only, no arithmetical constraints in the logical language and with guards on transitions made of simple linear constraints. This complements our understanding of model-checking flat counter systems with linear-time temporal logics, such as LTL for which the problem is already known to be (only) NP-complete with guards restricted to the linear fragment.
Work partially supported by the EU Seventh Framework Programme under grant agreement No. PIOF-GA-2011-301166 (DATAVERIF).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berman, L.: The complexity of logical theories. TCS 11, 71–78 (1980)
Bersani, M., Demri, S.: The complexity of reversal-bounded model-checking. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 71–86. Springer, Heidelberg (2011)
Boigelot, B.: Symbolic methods for exploring infinite state spaces. PhD thesis, Université de Liège (1998)
Bozga, M., Iosif, R., Konečný, F.: Safety problems are NP-complete for flat integer programs with octagonal loops. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 242–261. Springer, Heidelberg (2014)
Bruyère, V., Dall’Olio, E., Raskin, J.: Durations, parametric model-checking in timed automata with presburger arithmetic. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607, pp. 687–698. Springer, Heidelberg (2003)
Comon, H., Jurski, Y.: Multiple counter automata, safety analysis and Presburger Arithmetic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 268–279. Springer, Heidelberg (1998)
de Moura, L., Bjørner, N.S.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
Demri, S., Dhar, A.K., Sangnier, A.: Taming past LTL and flat counter systems. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 179–193. Springer, Heidelberg (2012)
Demri, S., Dhar, A.K., Sangnier, A.: On the complexity of verifying regular properties on flat counter systems, In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp. 162–173. Springer, Heidelberg (2013)
Demri, S., Finkel, A., Goranko, V., van Drimmelen, G.: Model-checking CTL* over flat Presburger counter systems. JANCL 20(4), 313–344 (2010)
Dhar, A.K.: Applying Satisfiability Modulo Theories Techniques to the Verification of Infinite-State Systems. PhD thesis, Université Paris VII-Denis Diderot (2014)
Emerson, A., Halpern, J.: ‘sometimes‘ and ’not never’ revisited: on branching versus linear time temporal logic. JACM 33, 151–178 (1986)
Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time logic strikes back. Sci. Comput. Program. 8(3), 275–306 (1987)
Finkel, A., Leroux, J.: How to compose presburger-accelerations: Applications to broadcast protocols. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 145–156. Springer, Heidelberg (2002)
Göller, S., Haase, C., Ouaknine, J., Worrell, J.: Branching-time model checking of parametric one-counter automata. In: Birkedal, L. (ed.) FOSSACS 2012. LNCS, vol. 7213, pp. 406–420. Springer, Heidelberg (2012)
Göller, S., Lohrey, M.: Branching-time model checking of one-counter processes and timed automata. SIAM J. Comput. 42(3), 884–923 (2013)
Habermehl, P.: On the complexity of the linear-time mu-calculus for Petri nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 102–116. Springer, Heidelberg (1997)
Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking CTL + and FCTL is hard. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001. LNCS, vol. 2030, pp. 318–331. Springer, Heidelberg (2001)
Leroux, J.: Presburger counter machines. Habilitation thesis, U. of Bordeaux (2012)
Leroux, J., Point, G.: TaPAS: The talence presburger arithmetic suite. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 182–185. Springer, Heidelberg (2009)
Leroux, J., Sutre, G.: On flatness for 2-dimensional vector addition systems with states. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 402–416. Springer, Heidelberg (2004)
Leroux, J., Sutre, G.: Flat counter automata almost everywhere? In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 489–503. Springer, Heidelberg (2005)
Minsky, M.: Computation, Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)
Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du premier congrès de mathématiciens des Pays Slaves, Warszawa, pp. 92–101 (1929)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Demri, S., Dhar, A.K., Sangnier, A. (2014). Equivalence Between Model-Checking Flat Counter Systems and Presburger Arithmetic. In: Ouaknine, J., Potapov, I., Worrell, J. (eds) Reachability Problems. RP 2014. Lecture Notes in Computer Science, vol 8762. Springer, Cham. https://doi.org/10.1007/978-3-319-11439-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-11439-2_7
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11438-5
Online ISBN: 978-3-319-11439-2
eBook Packages: Computer ScienceComputer Science (R0)