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Abstract. Over the years, inconsistency management has caught the at-
tention of researchers of different areas. Inconsistency is a problem that
arises in many different scenarios, for instance, ontology development or
knowledge integration. In such settings, it is important to have adequate
automatic tools for handling potential conflicts. Here we propose a novel
approach to belief base consolidation based on a refinement of kernel
contraction that accounts for the relation among kernels using clusters.
We define cluster contraction based consolidation operators as the con-
traction by falsum on a belief base using cluster incision functions, a
refinement of (smooth) kernel incision functions. A cluster contraction-
based approach to belief bases consolidation can successfully obtain a be-
lief base satisfying the expected consistency requirement. Also, we show
that the application of cluster contraction-based consolidation operators
satisfy minimality regarding loss of information and are equivalent to
operators based on maxichoice contraction.

Keywords: Inconsistency Management, Belief Consolidation, Minimal
Loss of Information.

1 Introduction

Inconsistency management is admittedly an important problem that has to be
faced, e. g., when knowledge provided by different users is expected to be ex-
ploited by a reasoning process. Although the integrated knowledge may be in-
consistent, it is obvious there is still value in that information even in the presence
of (potential) conflicts, and it is highly possible the existence of information that
is not related and/or affected by those conflicts. Consider the following simple
example that we use in the rest of the paper as the running example.

Suppose that we are gathering information about sports activities of early
alumnus of a college and some official records have been lost. We are particularly
interested in several remarkable students for which we wish to compile their
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doings and achievements in the college. As the first step for this activity we ask
for help from staff and faculty members; for a particular alumni, called Martin,
we obtain the following information from three different people that were in the
college at the same time as Martin:

� Staff member S1 tells us Martin used to play soccer, and he thinks he re-
members he also coached the school’s basketball team; let’s denote the first
proposition with p and the second with q .

� P.E. professor S2, who used to be one of Martin’s college mates, states that
he thinks Martin used to play in the basketball team; we will refer to this
proposition as r.

� An old class mate of Martin is not sure but she remembers the soccer team
used to be very proud and demanding at that time, so definitely if Martin
played soccer he did not play basketball; let this be proposition s.

We have not yet provided a formal definition of consistency, however, it is
rather intuitive that it is not possible for all these statements to hold together.
Several important approaches used to address the handling of inconsistency had
been proposed in Artificial Intelligence (AI), specially in the areas of belief re-
vision and argumentation. In particular, belief revision deals with the general
problem of the dynamics of knowledge, i.e., how belief states change and evolve
through time, solving possible inconsistencies in the process. One particular way
to deal with the above situation is to try to modify the information contained
in the knowledge base as little as possible in order to make it consistent; this
is known as knowledge consolidation in the belief revision community. In this
work, we define consolidation operators that takes an inconsistent belief base
and apply special functions, called incisions functions, so that inconsistencies
are resolved. The main contributions of this paper are:

– We first analyze a class of consolidation operators based on kernel contrac-
tion [11,12]; these operatorsmake incisions on the minimal conflictive subsets
of the inconsistent belief base. In Section 3 we demonstrate the operators’ be-
havior and show there are cases in which such operatorsmay not yieldminimal
loss of information; we also show that this problem arises from treating incon-
sistency in a localizedway, isolatingminimal conflicting sets in the consistency
restoration process.

– In order to prevent unnecessary loss of information, we develop an alternative
and novel class of consolidation operators, called cluster contraction-based
consolidation operators ; these operators aim to address conflicts globally by
means of the use of clusters [18] instead of minimal conflictive sets.

– In Section 4, we show that cluster incision functions are refinements of
smooth kernel incision functions [11], therefore the application of cluster
contraction-based consolidation operators produces in general, the deletion
of a smaller number of formulæ from the original knowledge base than any
smooth kernel contraction-based operators would produce.

– Finally, in Section 5 we show that cluster incision functions satisfy the min-
imality requirement regarding loss of information and we conclude that a
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consolidation operator is a cluster contraction-based consolidation operator
if and only if it is a maxichoice contraction-based consolidation operator,
completing in this way the spectrum of possibilities arising from the treat-
ment of inconsistency by means of minimal conflicts.

2 Preliminaries

We begin by introducing the notation necessary for our presentation and the
required concepts that will be used throughout the paper. Also, we present the
research context of belief change theory from which revision operators had arisen.

We assume a propositional language L built from a set of propositional sym-
bols P . This language is closed under the classical propositional logic symbols
¬ (negation), ∧ (conjunction), ∨ (disjunction), → (implication), and ↔ (equiv-
alence). We denote propositional letters using lower-case Latin letters, possibly
using subscripts (e. g., a, b, c, a1, a2) and propositional formulæ using lower-case
Greek letters, possibly using subscripts (e. g., α, β, γ, α1, α2); but, we reserve ρ
and � to represent incision functions.

An interpretation is a total function from P to {0, 1}, and the set of all
interpretations is denoted with W . An interpretation ω ∈ W is a model of a
formula α iff it makes α true in the classical way, denoted with ω |= α. The set
of all models of a formula α is denoted with mods(α), i.e., mods(α) = {ω ∈
W | ω |= α}. Finally, � stands for the usual deduction relation on propositional
logic, and ⊥ stands for an arbitrary contradiction.

We assume finite sets of propositional formulæ {α1, α2, . . . , αn}, which are
called belief bases and are denoted with upper-case Latin letters, usually K . We
extend the notion of models of a formula to sets of formulæ in the natural way,
i.e., mods(K ) = {ω ∈ W | ω |= α for all α ∈ K}. Additionally, KL denotes the
set of every belief base K containing formulæ in L. Finally, a consistent belief
base K must have at least one model; formally, we say that K is consistent iff
mods(K ) 	= ∅. Also, K is inconsistent iff K is not consistent.

The work of Alchourrón, Gärdenfors and Makinson where the AGM model is
presented [1], is currently considered the cornerstone from which belief change
theory has evolved (see [19]). In the AGM model, three basic change operators
are defined; these can be defined over a knowledge base K as follows: the result
of expanding K by a sentence α is a possibly larger set that infers α, the result of
contracting K by α is a possibly smaller set that does not infer α, and finally, the
result of revising K by α is a set K ′ that infers α and possibly neither extends
nor is part of the set K . In particular, if K infers ¬α then the result of the revi-
sion of K by α is a consistent set K ′ that infers α. AGM provides an axiomatic
characterizations of contraction and revision in terms of rationality postulates.
AGM contractions can be realized by partial meet contractions, which are based
on a selection among (maximal) subsets of K that do not imply α (the input
sentence). Particular cases of partial meet contractions are full meet contrac-
tions and maxichoice contractions. The former stands for an approach that is as
cautious as possible (i.e., only retaining formulæ that belong to every maximal
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consistent subset), while the latter has the desirable property that it minimizes
the loss of information, in the sense that it preserves as most formulæ as possi-
ble, since basically it selects one among all maximal consistent subsets. Another
possible approach for contraction is based on a selection among the (minimal)
subsets of K that contribute to make K imply α; kernel contraction [11] is one of
such approaches and it is known to be more general than partial meet contrac-
tion, and hence to the AGM approach to contraction [11,12]. Finally, Hansson
presents a refinement of kernel contraction, known as smooth kernel contrac-
tion, that aims to solve a problem attached to the generality of the former, as
sometimes kernel contraction may produce unnecessary deletions.

In this work we focus on a different belief change operation called consolida-
tion; this operation is inherently different from contraction and revision as the
ultimate goal of consolidation is to obtain a consistent belief base rather than
revising the knowledge base by a specific formula or removing a particular for-
mula from it. A natural way of achieving this is to take an inconsistent belief
base and restore its consistency by attending every conflict in it, a process that
is known in the belief revision literature as contraction by falsum [10].

3 Kernel and Cluster Contraction-based Belief Base
Consolidation

The work of Hansson in [11] describes how a contraction operation on belief
bases can be modeled by defining incision functions. These functions contract
a belief base, by a formula α by taking minimal sets that entail α (called α-
kernels) and producing “incisions” on those sets so they no longer entail α. The
resulting belief base is formed by the union of all formulæ that are not removed
by the function. This approach is known as kernel contraction.

Here, we define the consolidation process as the application of incision func-
tions over the minimal inconsistent subsets of a belief base. Following the termi-
nology proposed by Hansson [11] we will call such sets ⊥-kernels, or kernels for
short; in the following we recall the formal definition from [11].

Definition 1 (Kernels). Let K be a belief base. The set of kernels of K , de-

noted K⊥⊥⊥, is the set of all X ⊆ K such that mods(X) = ∅ and for every
X ′ � X it holds that mods(X ′) 	= ∅.

Example 1. Consider the inconsistent belief base K = {a, b → ¬a, b, c,¬c, d}.
For K we have two kernels: K⊥⊥⊥ = {κ1, κ2}, with κ1 = {a, b → ¬a, b} and
κ2 = {c,¬c}. As expected by the definition of kernels, if we remove at least one
formula from them, the result is consistent.

Once the set of kernels is identified, we need to establish how the inconsis-
tencies are to be resolved. A kernel incision function takes a set of kernels and
selects formulæ in them to be deleted from K [11].
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Definition 2 ((Smooth) Kernel Incision Function). Let K be a belief base

and K⊥⊥⊥ be the set of kernels for K . A kernel incision function is a function
ρ : 2KL �→ KL such that the following conditions hold:

– ρ(K⊥⊥⊥) ⊆ ⋃
(K⊥⊥⊥), and

– for all X ∈ K⊥⊥⊥, if X 	= ∅ then (X ∩ ρ(K⊥⊥⊥)) 	= ∅.
A kernel incision function ρ is said to be smooth if and only if for all X ⊂ K

such that X � β and β ∈ ρ(K⊥⊥⊥), we have then X ∩ ρ(K⊥⊥⊥) 	= ∅.
The second condition on Definition 2 requires from the incision function to select
at least one formula to be deleted from every kernel. An incision function may
remove several formulæ from a kernel; however, note that given the minimality
of kernels, removing only one formula from each kernel suffices to restore its con-
sistency. The last condition ensures that a kernel incision function is smooth [11].
Smoothness is characterized by the relative closure postulate [11] that aims to
retain as much from the original knowledge base as possible; it states that the
result of contracting a knowledge base K must contain those of its own logical
consequences that are also elements of K . Intuitively, smoothness captures the
set of incisions that yield contractions that can be obtained by performing the
contraction by any incision function and then adding back the elements from K
that were unnecessarily dropped by the incision function.

Based on (smooth) kernel incision functions we define kernel contraction-based
belief consolidation operators as follows.

Definition 3 (Kernel Contraction-based Consolidation Operator). Given

belief base K , let K⊥⊥⊥ be the set of kernels for K and ρ a kernel incision
function. A kernel contraction-based consolidation operator Υρ for K is defined
as:

Υρ(K ) = K \ ρ(K⊥⊥⊥)
Furthermore, if ρ is a smooth kernel incision function then Υρ is a smooth kernel
contraction-based consolidation operator.

Note that operator Υρ(·) is parameterized by the incision function ρ; the result
of applying such operator will be a consistent belief base since every conflict is
attended to by the kernel incision function. However, if we strive for minimal
loss of information (as it is usually assumed in the management of inconsistent
information), then this operator defined as it is, has the important drawback of
solving conflicts locally to every kernel; even if the function only removes one
formula from each kernel, the incisions may be too drastic from a global point of
view and the operator might end up giving up more formulæ than the ones that
are absolutely necessary. To see this problem, consider the following example:

Example 2. Consider K = {p, q, r, p → ¬r,¬(q ∧ r)}. This KB comes from our
running example, regarding Martin’s sports activities. The fourth proposition
corresponds to proposition s. Furthermore, we have added one more proposition,
namely ¬(q ∧ r); it is common sense to assume that it is not possible for the
same person to be both a player and the coach of a basketball team. Clearly, K
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is inconsistent. As we want to obtain a consistent belief base, we will apply a
kernel contraction-based consolidation operator. For belief base K we have that

K⊥⊥⊥ = {κ1, κ2}, where κ1 = {p, r, p → ¬r} and κ2 = {q, r,¬(q ∧ r)}.
The following table shows all possible incision functions that delete exactly

one formula for each kernel (other incisions are possible deleting more than one
formula from each kernel):

Possible Kernel Incision Functions

ρ(κ1) = {p} and ρ(κ2) = {q} ρ(κ1) = {p} and ρ(κ2) = {r}
ρ(κ1) = {p} and ρ(κ2) = {¬(q ∧ r)} ρ(κ1) = {r} and ρ(κ2) = {q}

ρ(κ1) = {r} and ρ(κ2) = {r} ρ(κ1) = {r} and ρ(κ2) = {¬(q ∧ r)}
ρ(κ1) = {p → ¬r} and ρ(κ2) = {q} ρ(κ1) = {p → ¬r} and ρ(κ2) = {r}

ρ(κ1) = {p → ¬r} and ρ(κ2) = {¬(q ∧ r)}
All the above possibilities restore consistency in K , but clearly there are

some choices that are better with respect to the amount of information lost
in the process. For instance, suppose we choose the functions that perform the
following incisions ρ(κ1) = {r} and ρ(κ2) = {q}; we then have that: Υρ(K ) =

K \ ρ(K⊥⊥⊥) = K \ {q, r}. As we can see, for κ2 we have deleted q from K in
order to solve the conflict. However, this is not actually necessary, as r (i.e., the
proposition that says that Martin played at the school’s basketball team) will
not be in the final belief base anyway, since it is deleted to solve the conflict in
κ1, and thus the conflict in kernel κ2 is already resolved, that is there is no need
to further remove propositions from κ2. The reason behind this choice is that a
kernel contraction-based operator solves conflicts locally to the kernels and there
is no mechanism in its definition to consider any interaction among them.

Clearly, it is possible to address the problem described above by analyzing
all possible incisions and computing the combination that makes the best choice
globally. However, this would involve traversing the (possibly) enormous search
space of all possible incision functions; in the following we present an approach
that avoids this by contemplating only incisions that are globally optimal with
respect to the amount of information loss. The proposal is based on the use
of clusters, first introduced in [18] and further analyzed as a foundation for
inconsistency management in [16,17]. This construction will allow us to have
a more global vision of conflicts, and, as we shall see latter, will also have a
direct impact on the consolidation process. Clusters are obtained by defining an
overlapping relation among kernels.

Definition 4 (Overlapping Kernels, Equivalence). Let K be a belief base,

and K⊥⊥⊥ be the set of kernels for K . Given kernels κ1, κ2 ∈ K⊥⊥⊥ we say
they overlap, denoted κ1θκ2, iff for some α ∈ κ1 and β ∈ κ2 it holds that
α |= β. Furthermore, we denote as θ∗ the equivalence relation obtained over

K⊥⊥⊥ through the reflexive and transitive closure of θ.

Example 3. Consider a belief base K such that K⊥⊥⊥ = {κ1, κ2} where κ1 =
{a,¬a ∧ ¬b} and κ2 = {b ∨ a,¬a ∧ ¬b}. Clearly: κ1θκ2, as ¬a ∧ ¬b |= ¬a ∧ ¬b.
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As another example of overlapping, consider belief baseK ′ such that K ′⊥⊥⊥ =
{κ1, κ2, κ3} where κ1 = {a ∧ b,¬b}, κ2 = {a,¬a} and κ3 = {a ∧ b,¬a}. Then, it
holds that for instance κ1θκ2 because a ∧ b |= a.

Below, we recall the notion of clusters, that formalizes the way in which conflicts
will be structured; intuitively, a cluster groups together kernels that stand for
related conflicts, in a transitive way.

Definition 5 (Clusters [18]). Let K be a belief base, K⊥⊥⊥ be the set of
kernels for K , and θ the overlapping relation. A cluster of K is a set ς =

⋃
κ∈[κ] κ,

where [κ] ∈ K⊥⊥⊥/θ∗. We use K⊥⊥⊥⊥ to denote the set of all clusters for K .

Example 4. Consider a belief base K such that K⊥⊥⊥ = {κ1, κ2, κ3}, with κ1 =
{α, β}, κ2 = {β, γ}, and κ3 = {δ, ε}. Then, we have the following set of clusters

K⊥⊥⊥⊥ = {ς1, ς2}, where ς1 = {α, β, γ} and ς2 = {δ, ε}. Note that, κ3 does

not overlap with any other kernel in K⊥⊥⊥, but [κ3] ∈ K⊥⊥⊥/θ∗ is such that
[κ3] = {κ3}, then it constitutes a cluster in itself (i.e., ς2 = {δ, ε}).
The use of clusters instead of kernels can help in preventing situations like the
one in Example 2 since the cluster structure allows us to identify kernels that
overlap; thus, we can contemplate incisions that make global considerations of
optimality. Moreover, the proposed notion of overlapping helps to identify only

useful clusters. To see this consider belief base K ′′ such that K ′′⊥⊥⊥ = {κ1, κ2}
where κ1 = {a∧b,¬b∧¬c} and κ2 = {b∧c,¬b∧¬d}. Formulæ a∧b and b∧c share
models, however they do not overlap under Definition 4. Considering these two
kernels together does not help in improving the consistency restoration process
as, for instance, the removal of a ∧ b does not resolve the conflict in κ2. We
have chosen to not consider these cases as overlaps in this work, but clearly this
decision depends directly on the way conflicts are allowed to be resolved; for a
consistency restoration technique not based on deleting entire formulæ from the
clusters a different notion of overlapping could prove more useful.

Remember that by design the simple removal of any single formula within
a kernel makes the set no longer inconsistent; however, this is not necessarily
the case for clusters [16]. Therefore, in order to define incision functions over
clusters, we cannot simply reuse Definition 2, as the following example shows.

Example 5. Continuing with Example 4, consider a kernel incision function ρ

and the cluster ς1 ∈ K⊥⊥⊥⊥. We could have, for instance, that ρ(ς1) = {α}.
Then, the intersection between the cluster and the result of the incision function
is non empty and the selected formula belongs to the union of clusters, fulfilling
the conditions on the definition of kernel incision functions, but the inconsistency
remains as κ2 = {β, γ} still is an inconsistent set.

We now introduce cluster incision functions; these functions are refinements of
the ones introduced earlier in the paper.

Definition 6 (Cluster Incision Function). Let K be a belief base and K⊥⊥⊥
and K⊥⊥⊥⊥ be the set of kernels and clusters for K , respectively. A cluster inci-
sion function is a function � : 2KL �→ KL such that:
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– �(K⊥⊥⊥⊥) ⊆ ⋃
(K⊥⊥⊥⊥), and

– for all X ∈ K⊥⊥⊥⊥ and Y ∈ K⊥⊥⊥ such that Y ⊆ X it holds that for some

α ∈ Y , Y ∩ �(K⊥⊥⊥⊥) = {α}.
From Definition 6, we have that for any kernel Y included in some cluster X in
a belief base a cluster incision function selects exactly one formula to remove,

(i.e., {Y ∩�(K⊥⊥⊥⊥)} is a singleton). Now, based on cluster incision functions we
define a new operator, namely cluster contraction-based consolidation operator.

Definition 7 (Cluster Contraction-based Consolidation Operator). Given a

belief base K , let K⊥⊥⊥ and K⊥⊥⊥⊥ be the set of kernels and clusters for K ,
respectively, and � be a cluster incision function. A cluster contraction-based
operator Ψ� for K is defined as follows:

Ψ�(K ) = K \ �(K⊥⊥⊥⊥)
The last condition in Definition 6 ensures that all conflicts are resolved once
we delete the selected formulæ. Example 6 shows the behavior of a cluster
contraction-based operator Ψ� over the belief base K from Example 2.

Example 6. Consider once again belief base K from Example 2; we have the fol-

lowing set of clusters K⊥⊥⊥⊥ = {ς1}, with ς1 = {p, q, r, p → ¬r,¬(q∧r)}, because
r belongs to both kernels in K⊥⊥⊥; thus, r |= r. For a cluster contraction-based
operator Ψ� based on a cluster incision function �, we have the following possible
incisions, narrowing the previous ones shown in Example 2:

Possible Cluster Incision Functions

�(ς1) = {p, q} �(ς1) = {p,¬(q ∧ r)}
�(ς1) = {r} �(ς1) = {p → ¬r, q}

�(ς1) = {p → ¬r,¬(q ∧ r)}

Consider option �(ς1) = {p, q}. Thus, Ψ�(K ) = K \ �(K⊥⊥⊥⊥) = K \ {p, q}.
Note that, even if we prefer proposition r over proposition q, the minimal loss
of information principle is still fulfilled, as the non-minimal options in Example
2 are not even considered by any cluster incision function. For example, if we
were to choose r for deletion then to also choose q (i.e., the option considered in
Example 2) is no longer a viable option for a cluster incision function, as if we

choose both formulæ then the set �(K⊥⊥⊥⊥) ∩ κ2 will no longer be a singleton
set, violating the second condition from Definition 6.

Proposition 1 shows that the consistency restoration process based on cluster
contraction fulfils the consistency requirement.

Proposition 1. Let K be a belief base, and Ψ� be a cluster contraction-based
consolidation operator. Then, mods(Ψ�(K )) 	= ∅.
For space reasons we do not include the proof of results. The formal proof for
Proposition 1 relies on the fact that, by definition, cluster incision function select
one formula for every kernel that composes every clusters, effectively resolving
the inconsistency for each one since kernels are minimal inconsistent sets.
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4 Relationship with Kernel Contraction-Based
Consolidation

In the previous section we introduced an approach for belief base consolidation
that works as a refinement of the approach based on kernel contraction. In this
section we focus on the relationship between (smooth) kernel contraction-based
consolidation and cluster contraction-based consolidation. Specifically, we seek
to establish this relationship from the point of view of loss of information.

We first show that cluster incision functions are refinements of kernel incision
functions, that is, we have that every cluster contraction-based consolidation
operators is also a kernel contraction-based one.

Proposition 2. Let Ψ� be a cluster contraction-based consolidation operator.
Then, Ψ� is a kernel contraction-based consolidation operator.

To prove that Ψ� is a kernel contraction-based merging operator it is enough
to show that cluster incision functions are also kernel incision functions; if we
consider the tables in Examples 5 and 6 showing all possible kernel and cluster
incisions, respectively, we can see that every possible cluster incision is indeed
a kernel incision. The converse from Proposition 2 does not hold, as kernel inci-
sion functions are not necessarily cluster incision functions, since the former not
always satisfy the last condition from Definition 6 as we illustrate below.

Example 7. Consider belief base K from Example 2 and suppose we have

Υρ(K ) = K \ ρ(K⊥⊥⊥) = K \ {q, r}. The kernel incision function that gives rise
to this operator performs the following incisions: ρ(κ1) = {r} and ρ(κ2) = {q}.
Note that ρ is not a valid cluster incision function since |κ2∩ρ(K⊥⊥⊥⊥)| = {q, r},
i.e., |κ2 ∩ ρ(K⊥⊥⊥⊥)| > 1. Furthermore, it is not possible for any valid cluster
incision function to yield this result.

As hinted by Examples 2 and 6, a benefit of using cluster-based consolidation
operators over (smooth) kernel-based ones is that unnecessary deletions can be
avoided by clustering conflicts. The characteristics of the choices made by cluster
incision functions have an important impact on the number of formulæ deleted:
we can show that for any kernel contraction-based consolidation operator there
is a cluster contraction-based one that removes at most the same number of
formulæ than the former; the following proposition formalizes the result.

Proposition 3. Let K be a belief base. Then, for any kernel contraction-based
consolidation operator Υρ over K there exists a cluster contraction-based consol-
idation operator Ψ� over K such that Υρ(K ) ⊆ Ψ�(K ).

Above, we have shown that cluster-based operators are refinements of “pure”
kernel contraction-based ones. We can shown that cluster incision functions re-
fines smooth incision functions as well, and hence the operators based on them.

Proposition 4. If Ψ� is a cluster contraction-based consolidation operator, then
Ψ� is a smooth kernel contraction-based consolidation operator.
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The converse of Proposition 4 does not hold; consider the following example.

Example 8. Consider a belief base K = {p, q, r, p → ¬q, p → ¬r}. We have that

K⊥⊥⊥ = {κ1, κ2} where κ1 = {p, q, p → ¬q} and κ2 = {p, r, p → ¬r}}, and
thus ⊥⊥⊥(K ) = {ς1} where ς1 = {p, q, r, p → ¬q, p → ¬r}. Now, consider an

incision function ρ(K⊥⊥⊥) = {p, r}. We can see that ρ satisfies smoothness (cf.

Def. 2). However, we have that ρ(K⊥⊥⊥) ∩ κ2 is not a singleton. Then, ρ is not
a cluster incision function. Note that, once we choose to remove p from K , it is
unnecessary to remove r, and any valid cluster incision function will avoid that.

From the previous example we can conclude that smooth incision functions,
although a proper refinement of kernel incision functions, can still produce un-
necessary loss of information. In the next section we characterize a notion of
optimality of incision functions and position our proposal with respect to AGM-
based approaches to consolidation.

5 Connection with Maxichoice Contraction-Based
Consolidation

In this section we further analyze cluster incision functions and the consoli-
dation operators based on them; particularly, we focus in the relationship with
maxichoice contraction-based consolidation, as maxichoice contractions [1] are as
conservative as possible. Maxichoice contraction is based on the use of selection
functions that select one among all possible maximal consistent subsets of the
knowledge base. Maxichoice contraction-based consolidation operators are those
based on maxichoice contraction in the same manner as the operators defined
previously. To formally characterize optimality of incision functions, we recall
the notion of minimality from [9] and adapt it for cluster incision functions.

Definition 8 (Minimality). An incision function � for a belief base K is min-

imal if no proper subset of �(K⊥⊥⊥⊥) defines an incision function.

Next we show that cluster incision functions are minimal.

Proposition 5. Let � be an incision function. Then, � is a cluster incision
function iff it is a minimal incision function.

The proof for Proposition 5 is based on the fact that for every cluster X ∈
K⊥⊥⊥⊥ such that X ∩ �(K⊥⊥⊥⊥) = A no proper subset of A in itself restores
consistency, and hence no subset of it gives raise to a proper incision function.

The relationship between selection and incision functions was previously an-
alyzed in [9]. As noted there, minimality of incision functions corresponds to
maximality of contraction; a direct result of this is the following proposition.

Proposition 6 (adapted from [9]). Let � be an incision function, Ψ� be its
associated consolidation operator and K a belief base. Then, � is a minimal
incision function iff there exists H ⊆ K such that H = K \ Ψ�(K ) where (1) H
is consistent, and (2) there is no H � H ′ � K such that H ′ is consistent.
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Proposition 6 states that there is a one-to-one correlation between maximal
consistent subsets of a K and minimal incision functions. More specifically, the
result in [9] shows that any kernel contraction-based on minimal incision func-
tions is a maxichoice contraction. The proof in [9] can be slightly modified for
our setting; intuitively the validity of this result relies on the fact that if there is
a subset H of K that is maximally consistent, then adding any further formulæ
will make it inconsistent, thus, any incision � such that �∩K = H must be min-
imal; if this were not the case then there would exist a subset �′ � � such that
K \ �′ is consistent, and therefore H would not be maximally consistent since
K \H � K \ �′. Conversely, if an incision � is minimal then it generates a max-
imally consistent subset because no proper subset of � is an incision function,
i.e., for any A � � it holds that K \A is inconsistent.

Although Falappa et al. elaborate on the relationship between kernel and
maxichoice contractions further, no class of incision functions satisfying mini-
mality (thus corresponding to maxichoice contractions) is identified. As a corol-
lary of the previous results we can conclude that our approach is equivalent
to consolidation through maxichoice contraction, but arising from minimal in-
cision functions, which means that operators retain as much information as
possible.

Corollary 1. Ψ� is a cluster contraction-based consolidation operator iff Ψ� is
a maxichoice contraction-based consolidation operator.

Discussion. Corollary 1 completes the spectrum of possibilities arising from
the treatment of minimal conflicts. Nevertheless, it is important to note that,
although our approach is equivalent to consolidation through maxichoice con-
traction in terms of the final belief base obtained, there is still importance in the
difference in how this belief base is obtained. While maxichoice operators have
to deal with maximal consistent subsets, ours deal with minimal inconsistent
ones. There is an interesting ongoing discussion about which approach is better.
In [20] examples are shown that indicate that for some instances it is faster to use
kernel contraction while for others it is faster to use partial meet (or maxichoice)
contraction. As noticed in [20], whether it is possible to detect when it is better
to use one or the other method is still an open problem. It can be argued that
the final choice will depend on the application environment and the language
selected; clearly, different needs from the point of users prompt choosing one
approach over the other. As an example, consider the setting from [17], where
knowledge bases are relational databases considered together with functional de-
pendencies, there it is possible to efficiently (polynomial time in the number of
tuples in the database, assuming a fixed schema) compute and maintain the set
of clusters by means of indexes; alternatively, in such setting an inconsistency
management approach based on the manipulation of maximal consistent subsets
(other than simply computing one of them) would require higher computational
effort and possibly the utilization of tools outside the DBMS.
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6 Related Work

The problem of inconsistency handling has been addressed differently over the
years in diverse environments, e. g., relational databases, propositional knowl-
edge bases or fragments of first order logics such as logic programming.

As stated in the introduction, the area of Belief Revision has undoubtedly
produced great advances in the handling of inconsistencies. Particularly, the work
by Hansson [11] is the foundation and inspiration for this paper. More recently,
the work in [13] presents an approach for merging belief bases, stemming from
inconsistency minimization, which removes exactly one formula in each minimal
inconsistent subset of formulas. As shown, to remove one formula from minimal
inconsistent sets may not be sufficient to ensure that nothing is given up without
reason: it is still important how such formula is chosen, considering other minimal
inconsistent sets as well (cf. Examples 2 and 6). As shown in the paper, the
structure of cluster helps in such choice by only considering optimal incisions,
minimizing loss of information. In [8] an approach for revising a propositional
knowledge base by a set of sentences is presented, where every sentence in the
input set can be independently accepted but there may exist inconsistencies
when considering the whole set. The main difference between this work and ours
is that they first solve inconsistencies in the set of sentences, in this manner they
can decide which subset of it will characterize the revision. Furthermore, in our
approach no preponderance to particular formulæ is given in the process as our
proposal is based on consolidation instead of revision.

Also within Artificial Intelligence, the works by Baral et al. in knowledge bases
combination [3], Brewka’s preferred subtheories [7], and several other works on
entailment from inconsistent knowledge bases such as [4,5], are based on the
idea of selecting maximal subsets of the knowledge base (or the combination
of several ones) that are consistent w.r.t. a set the integrity constraints. All
of these approaches can be defined in the AGM framework as specific partial
meet contraction functions by adequately specifying the selection function. As
shown in the previous section, our operators are equivalent to operators based
on maxichoice contraction, a specific class of partial meet contraction.

In the area of Databases one of the most influential works is the one by Arenas
et al. [2] on Consistent Query Answering. Their treatment of inconsistencies does
not attempt to obtain a consistent database, instead, the consistent answers to
a query correspond to the set of (classical) answers to the query in every repair
of the inconsistent database, which are the consistent subsets (or supersets,
depending on the type of integrity constraints) of the original database that
differs minimally from it. Similar in spirit are some of the syntactic approaches
analyzed in [6]. Unlike our approach, these approaches can be seen as an “on the
fly” consistency restoration, guided for particular queries, targeting the subset
of the knowledge that matters for that query and not the whole knowledge base.

Finally, regarding the use of clusters the most closely related research to
the work presented here is the one by Lukasiewicz et al. [16]. There, the au-
thors define a general framework for inconsistency-tolerant query answering in
Datalog+/– ontologies based on the notion of incision functions. Besides the
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obvious difference in the language, the aims of their work and ours are clearly
different; their work follows the same idea of Arenas et al. [2], focusing on en-
forcing consistency at query time obtaining (lazy) consistent answers. Clearly,
this process must be carried on for every query posed to the system, while our
approach allows to obtain a new knowledge base that can be queried without
considering inconsistency issues. As usual the choice of one approach over the
other heavily depend on the application environment.

7 Conclusions and Future Work

In this paper we focus on an approach to consistency restoration (consolidation)
of belief bases defined on terms of belief base contractions [1]. We developed
a new class of belief consolidation operators, called cluster contraction-based
operators, based on incision functions that aims for a globally efficient conflict
resolution. The results show that a cluster contraction-based consolidation op-
erator do not only yields a consistent belief base, as expected, but also does it
satisfying minimality requirements regarding loss of information.

This family of operators are defined based on cluster incision functions. We
have shown that cluster incision functions are refinements of smooth kernel in-
cision functions, which implies that cluster contraction-based operators are at
least as efficient as (smooth) kernel contraction-based operators from the point
of view of minimal loss of information in the consolidation process. Furthermore,
we show that our operators are equivalent to consolidation operators based on
maxichoice contraction, completing the spectrum of possibilities for approaches
arising from the treatment of minimal conflicts. As recent findings indicates
[20], in some cases it is better to use kernel-based approaches, while in others
the contrary holds. Clearly, the choice of one approach over the other depend on
particular aspects of the application environment.

For future work, we plan to implement the different operators and perform
empirical trials over different scenarios. Also, in this first step towards the for-
malization of this new class of consolidation operators we have not considered
any form of ranking in the definition of the incision functions. In the future,
we plan to define entrenchment relations in terms of orderings among formulæ
based on generic measures, and to study the merits of extensions of cluster inci-
sion function to account for such orderings. Furthermore, we intend to analyze
the behavior of the operators for particular measures, for instance measures of
amount of information in a knowledge base in the presence of inconsistency
(e. g., [15]) and measures of the degree of inconsistency (as considered in [14]).
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