Abstract
To characterize a user’s preferences and the social summary of a document, the user profile and the general document profile are widely adopted in existing folksonomy-based personalization solutions. However, in many real-world situations, using only these two profiles cannot personalize well the search results on the Social Web, because (i) different people usually have different perceptions about the same document, and (ii) the information contained in the user profile is usually not comprehensive enough to characterize a user’s preference. Therefore, in this work, in order to improve personalized search on the Social Web, we propose a dual personalized ranking (D-PR) function, which adopts two novel profiles: an extended user profile and a personalized document profile. For each document, instead of using a general document profile for all users, our method computes for each individual user a personalized document profile to better summarize his/her perception about this document. A solution is proposed to estimate this profile based on the perception similarities between users. Moreover, we define an extended user profile as the sum of all of the user’s personalized document profiles to better characterize a user’s preferences. Experimental results show that our D-PR ranking function achieves better personalized ranking on the Social Web than the state-of-the-art baseline method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benz, D., Hotho, A., Jäschke, R., Krause, B., Stumme, G.: Query logs as folksonomies. Datenbank-Spektrum 10(1), 15–24 (2010)
Bischoff, K., Firan, C.S., Nejdl, W., Paiu, R.: Can all tags be used for search? In: Proceedings of CIKM, pp. 193–202 (2008)
Bouadjenek, M.R., Hacid, H., Bouzeghoub, M.: Sopra: A new social personalized ranking function for improving Web search. In: Proceedings of SIGIR, pp. 861–864 (2013)
Carmel, D., Zwerdling, N., Guy, I., Ofek-Koifman, S., Har’el, N., Ronen, I., Uziel, E., Yogev, S., Chernov, S.: Personalized social search based on the user’s social network. In: Proceedings of CIKM, pp. 1227–1236 (2009)
Chirita, P.A., Firan, C.S., Nejdl, W.: Personalized query expansion for the Web. In: Proceedings of SIGIR, pp. 7–14 (2007)
Dou, Z., Song, R., Wen, J.: A large-scale evaluation and analysis of personalized search strategies. In: Proceedings of WWW, pp. 581–590 (2007)
Haveliwala, T.H.: Topic-sensitive pagerank. In: Proceedings of WWW, pp. 517–526 (2002)
Jansen, B.J., Spink, A., Bateman, J., Saracevic, T.: Real life information retrieval: A study of user queries on the Web. In: SIGIR Forum, pp. 5–17 (1998)
Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting clickthrough data as implicit feedback. In: Proceedings of SIGIR, pp. 154–161 (2005)
Jones, K.S.: A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation 28, 11–21 (1972)
Kobsa, A.: Privacy-enhanced personalization. Commun. ACM 50(8), 24–33 (2007)
Krause, B., Hotho, A., Stumme, G.: A comparison of social bookmarking with traditional search. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 101–113. Springer, Heidelberg (2008)
Luxenburger, J., Elbassuoni, S., Weikum, G.: Task-aware search personalization. In: Proceedings of SIGIR, pp. 721–722 (2008)
Noll, M.G., Meinel, C.: Web search personalization via social bookmarking and tagging. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 367–380. Springer, Heidelberg (2007)
Noll, M.G., Meinel, C.: The metadata triumvirate: Social annotations, anchor texts and search queries. In: Proceedings of WI-IAT, pp. 640–647 (2008)
Qiu, F., Cho, J.: Automatic identification of user interest for personalized search. In: Proceedings of WWW, pp. 727–736 (2006)
Robertson, S.E., Walker, S.: Some simple effective approximations to the 2-Poisson model for probabilistic weighted retrieval. In: Proceedings of SIGIR, pp. 232–241 (1994)
Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York (1986)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)
Shen, X., Tan, B., Zhai, C.: Implicit user modeling for personalized search. In: Proceedings of CIKM, pp. 824–831 (2005)
Shen, X., Zhai, C.X.: Exploiting query history for document ranking in interactive information retrieval. In: Proceedings of SIGIR, pp. 377–378 (2003)
Sugiyama, K., Hatano, K., Yoshikawa, M.: Adaptive Web search based on user profile constructed without any effort from users. In: Proceedings of WWW, pp. 675–684 (2004)
Teevan, J., Dumais, S.T., Liebling, D.J.: To personalize or not to personalize: modeling queries with variation in user intent. In: Proceedings of SIGIR, pp. 163–170 (2008)
Teevan, J., Morris, M.R., Bush, S.: Discovering and using groups to improve personalized search. In: Proceedings of WSDM, pp. 15–24. ACM (2009)
Vallet, D., Cantador, I., Jose, J.M.: Personalizing Web search with folksonomy-based user and document profiles. In: Gurrin, C., He, Y., Kazai, G., Kruschwitz, U., Little, S., Roelleke, T., Rüger, S., van Rijsbergen, K. (eds.) ECIR 2010. LNCS, vol. 5993, pp. 420–431. Springer, Heidelberg (2010)
Xu, S., Bao, S., Fei, B., Su, Z., Yu, Y.: Exploring folksonomy for personalized search. In: Proceedings of SIGIR, pp. 155–162 (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Xu, Z., Lukasiewicz, T., Tifrea-Marciuska, O. (2014). Improving Personalized Search on the Social Web Based on Similarities between Users. In: Straccia, U., Calì, A. (eds) Scalable Uncertainty Management. SUM 2014. Lecture Notes in Computer Science(), vol 8720. Springer, Cham. https://doi.org/10.1007/978-3-319-11508-5_26
Download citation
DOI: https://doi.org/10.1007/978-3-319-11508-5_26
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11507-8
Online ISBN: 978-3-319-11508-5
eBook Packages: Computer ScienceComputer Science (R0)