Abstract
In this work we consider the protector control problem using cellular automata approach. We give some definitions and characterizations of vulnerable zones and protector control for a cellular automaton model. We illustrate this notion through a fire forest example using a developed application with JAVA environment.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernoussi, A.: Spreadability and vulnerability of distributed parameter systems. International Journal of Systems Science 38(4), 305–317 (2007)
Bernoussi, A.: Spreadability, vulnerability and protector control. Mathematical Modelling of Natural Phenomena 5(7), 145–150 (2010)
Chopard, B., Droz, M.: Cellular automata Modelling of Physical Systems. Cambridge University Press, Cambridge (1998)
Deutsch, A., Dormann, S.: Cellular automaton modeling of biological pattern formation (2005)
El Yacoubi, S., El Jai, A.: Cellular automata and spreadability. International Journal of Mathematical and Computer Modelling 36, 1059–1074 (2002)
El Yacoubi, S.: A Mathematical method for control problems on Cellular Automata models. International Journal of Systems Sciences 39(5), 529–538 (2008)
Greenberg, M.J., Hastings, S.P.: Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics 34(3), 515–523 (1978)
Karafyllidis, I., Thanailakis, A.: A model for predicting forest fire spreading using cellular automata. Ecological Modelling 99, 87–97 (1997)
Progias, P., Sirakoulis, G.C.: An FPGA Processor for Modelling Wildfire Spread. Mathematical and Computer Modeling 57(5-6), 1436–1452 (2013)
Qaraai, Y., Bernoussi, A.: Protector control: Extension to a class of nonlinear distributed systems. International Journal of Applied Mathematics and Computer Science 20(3), 427–443 (2010)
Slimi, R., El Yacoubi, S.: Spreadable Cellular Automata: Modelling and Simulation. International Journal of Systems Sciences 40(5), 507–520 (2009)
Toffoli, T.: Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics. Physica D: Nonlinear Phenomena 10(1), 117–127 (1984)
Trunfio, G.A.: Predicting Wildfire Spreading Through a Hexagonal Cellular Automata Model. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 385–394. Springer, Heidelberg (2004)
Trunfio, G.A., D’Ambrosio, D., Rongo, R., Spataro, W., Di Gregorio, S.: A New Algorithm for Simulating Wildfire Spread Through Cellular Automata. ACM Transactions on Modeling and Computer Simulation 22, 6:1–6:26 (2011) ISSN: 1049-3301
Vichniac, G.Y.: Simulating physics with cellular automata. Physica D: Nonlinear Phenomena 10(1), 96–116 (1984)
Wolfram, S.: Cellular automata and complexity: collected papers, vol. 1. Addison-Wesley, Reading (1994)
Zapp, M.L., Green, M.R.: Sequence-specific RNA binding by the HIV-1 Rev protein. Nature 342(6250), 714–716 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Jellouli, O., Bernoussi, A., Amharref, M., El Yacoubi, S. (2014). Vulnerability and Protector Control: Cellular Automata Approach. In: WÄ…s, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-11520-7_23
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11519-1
Online ISBN: 978-3-319-11520-7
eBook Packages: Computer ScienceComputer Science (R0)