Skip to main content

The Basic Reproduction Number for Chagas Disease Transmission Using Cellular Automata

  • Conference paper
Cellular Automata (ACRI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Included in the following conference series:

Abstract

This paper presents mathematical and numerical results for a cellular automaton model describing the transmission dynamics of Chagas disease in both homogeneous and heterogeneous environments. The basic reproduction number R 0 which integrates factors that determine whether the pathogen can establish or not will be computed using the next-generation matrix approach. The simulation results show the effect of landscape heterogeneity in the vector transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Annan, K., Fisher, M.: Stability Conditions of Chagas-HIV Co-infection Disease Model Using the Next Generation Method. Applied Mathematical Sciences 7(57), 2815–2832 (2013)

    Google Scholar 

  2. Mikler, A.R., Venkatachalam, S.: Modeling Infectious Diseases using Global Stochastic Cellular Automata. Journal of Biological Systems 4, 421–439 (2005)

    Article  Google Scholar 

  3. Barbu, C., Dumonteil, E., Gourbière, S.: Characterization of the dispersal of non-domiciliated Triatoma dimidiata through the selection of spatially explicit models. PLoS Negl. Trop. Dis. 4(8), e777 (2010)

    Google Scholar 

  4. Batty, M.: Cities and Complexity: Understanding Cities with Cellular Automata, Agent-Based Models, and Fractals. The MIT Press (2007)

    Google Scholar 

  5. Beauchemin, C., Samuel, J., Tuszynski, J.: Some simple epidemic models. Theoretical Biology 232, 223–234 (2005)

    Article  MathSciNet  Google Scholar 

  6. Cissé, B., El Yacoubi, S., Gourbière, S.: A cellular automaton model for the transmission of Chagas disease in heterogeneous landscape and host community. Submitted to Int. Journal of Applied Mathematical Modelling

    Google Scholar 

  7. Chopard, B., Droz, M.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models: an Introduction. Cambridge University Press (1998)

    Google Scholar 

  8. Diekmann, O., Heesterbeek, J.A.P., Roberts, M.G.: The construction of next-generation matrices for compartmental epidemic models. Royal Society Interface 7, 873–885 (2010)

    Article  Google Scholar 

  9. Dumonteil, E., Nouvellet, P., Rosecrans, K., Ramirez-Sierra, M.J., Gamboa-León, R., Cruz-Chan, V., Rosado-Vallado, M., Gourbière, S.: Eco-bio-social determinants for house infestation by non-domiciliated Triatoma dimidiata in the Yucatan Peninsula, Mexico. PLoS Negl. Trop. Dis. 26:7(9), e2466 (2013)

    Google Scholar 

  10. El Yacoubi, S.: A Mathematical method for control problems on Cellular Automata models. International Journal of Systems Sciences 39(5), 529–538 (2008)

    Article  MATH  Google Scholar 

  11. Gagliardi, H.F., Alves, D.: Small-World Effect in Epidemics Using Cellular Automata. Journal of Mathematical Population Studies 17, 79–90 (2010)

    Article  MathSciNet  Google Scholar 

  12. Gourbière, S., Gourbière, F.: Competition between unit-restricted fungi: a metapopulation model. J. Theor. Biol. 217(3), 351–368 (2002)

    Article  Google Scholar 

  13. Gourbière, S., Menu, F.: Adaptive dynamics of dormancy duration variability: evolutionary trade-off and priority effect lead to sub-optimal adaptation. Evolution 63(7), 1879–1892 (2009)

    Article  Google Scholar 

  14. Gourbière, S., Dorn, P., Triplet, F., Dumonteil, E.: Genetics and evolution of triatomines: from phylogeny to vector control. Heredity 108, 190–202 (2012)

    Article  Google Scholar 

  15. de Castro Medeiros, L.C., Castilho, C.A.R., Barga, C., de Souza, W.V., Regis, L., et al.: Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence. PLoS Negl. Trop. Dis. 5(1), e942 (2011), doi:10.1371/journal.pntd.0000942

    Google Scholar 

  16. Nouvellet, P., Dumonteil, E., Gourbière, S.: Effects of genetic factors and infection status on wing morphology of Triatoma dimidiata species complex in the Yucatan Peninsula, Mexico. Infection, Genetics and Evolution 11(6), 1243–1249 (2011)

    Article  Google Scholar 

  17. Nouvellet, P., Dumonteil, E., Gourbière, S.: The Improbable Transmission of Trypanosoma cruzi to Human: The Missing Link in the Dynamics and Control of Chagas Disease. PLoS Negl. Trop. Dis. 7(11), e2505 (2013)

    Google Scholar 

  18. Pacheco-Tucuch, F.S., Ramirez-Sierra, M.J., Gourbière, S., Dumonteil, E.: Public street lights increase house infestation by Triatoma dimidiata, vector of Chagas disease in the Yucatan Peninsula. PLoS One 7(4), e36207 (2012)

    Google Scholar 

  19. Rascalou, G., Pontier, D., Menu, F., Gourbière, S.: Emergence and prevalence of human vector-borne diseases in sink vector populations. PLoS ONE 7(5), e36858 (2012), doi:10.1371/journal.pone.0036858

    Google Scholar 

  20. Schimit, P.H.T., Monteiro, L.H.A.: On the reproduction number and the topological properties of the contact network: An epidemiological study in mainly locally connected cellular automata. Ecological Modeling 220, 1034–1042 (2009)

    Article  Google Scholar 

  21. Sirakoulis, G.C., Karafyllidis, I.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modeling 133, 209–223 (2000)

    Article  Google Scholar 

  22. Slimi, R., Yacoubi, S.E., Dumonteil, E., Gourbière, S.: A cellular automata model for chagas disease. International Journal of Applied Mathematical Modelling 33, 1072–1085 (2009)

    Article  MATH  Google Scholar 

  23. Hoja White, S., Martin del Rey, A., Rodriguez Sanchez, G.: Modeling epidemics using cellular automata. Applied Mathematics and Computation 186, 193–202 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Cissé, B., El Yacoubi, S., Gourbière, S. (2014). The Basic Reproduction Number for Chagas Disease Transmission Using Cellular Automata. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics