Skip to main content

Towards a Comprehensive Understanding of Multi-state Cellular Automata

  • Conference paper
Cellular Automata (ACRI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Included in the following conference series:

Abstract

Motivated by the fact that many cellular automata (CAs) for describing biological, physical or chemical processes are built upon more than two states, whereas most the majority of results on the stability of CAs is restricted to two-state CAs, we show in this paper how non-directional Lyapunov exponents can be used to assess the stability of multi-state CAs. Moreover, we pay particular attention to the different types of defects that may emerge during the evolution of such CAs from a single initial defect of a given type. Numerical results are presented for the family of three-state totalistic CAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrecut, M.: A simple three-states cellular automaton for modelling excitable media. International Journal of Modern Physics B 12, 601–607 (1998)

    Article  MathSciNet  Google Scholar 

  2. Baetens, J.M., De Baets, B.: Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians. Chaos 20, 033112 (2010)

    Google Scholar 

  3. Bagnoli, F., Rechtman, R., Ruffo, S.: Damage spreading and Lyapunov exponents in cellular automata. Physics Letters A 172, 34–38 (1992)

    Article  Google Scholar 

  4. da Silva, R., Alves Jr., N.: Dynamic exponents of a probabilistic three-state cellular automaton. Physica A 350, 263–276 (2005)

    Article  Google Scholar 

  5. Fisch, R., Gravner, J.: One-dimensional deterministic Greenberg-Hastings models. Complex Systems 9, 329–348 (1995)

    MATH  MathSciNet  Google Scholar 

  6. Fisch, R., Gravner, J., Griffeath, D.: Metastability in the Greenberg-Hastings model. The Annals of Applied Probability 3, 329–348 (1993)

    Article  MathSciNet  Google Scholar 

  7. Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics 34, 515–523 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  8. Langton, C.: Computation at the edge of chaos. Physica D 42, 12–37 (1990)

    Article  MathSciNet  Google Scholar 

  9. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on Information Theory 22, 75–81 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  10. Peltomäki, M., Rost, M., Alava, M.: Characterizing spatiotemporal patterns in three-state lattice models. Journal of Statistical Mechanics: Theory and Experiment P02042 (2009)

    Google Scholar 

  11. Potts, R.B.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  12. Reichenbach, T., Mobilia, M., Frey, E.: Self-organization of mobile populations in cyclic competition. Journal of Theoretical Biology 254, 368–383 (2008)

    Article  MathSciNet  Google Scholar 

  13. Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling 133, 209–223 (2000)

    Article  Google Scholar 

  14. von Neumann, J.: The general and logical theory of automata. In: Jeffres, L.A. (ed.) The Hixon Symposium on Cerebral Mechanisms in Behaviour, pp. 1–41. John Wiley & Sons, Pasadena (1951)

    Google Scholar 

  15. Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)

    Article  MathSciNet  Google Scholar 

  16. Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Champaign (2002)

    MATH  Google Scholar 

  17. Wu, F.: The Potts model. Reviews of Modern Physics 54, 235–268 (1982)

    Article  MathSciNet  Google Scholar 

  18. Wuensche, A.: Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. International Journal of Unconventional Computing 1, 375–398 (2005)

    Google Scholar 

  19. Zanette, D.H.: Multistate cellular automaton for reaction-diffusion processes. Physical Review A 46, 7573–7577 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Baetens, J.M., De Baets, B. (2014). Towards a Comprehensive Understanding of Multi-state Cellular Automata. In: WÄ…s, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics