Abstract
Motivated by the fact that many cellular automata (CAs) for describing biological, physical or chemical processes are built upon more than two states, whereas most the majority of results on the stability of CAs is restricted to two-state CAs, we show in this paper how non-directional Lyapunov exponents can be used to assess the stability of multi-state CAs. Moreover, we pay particular attention to the different types of defects that may emerge during the evolution of such CAs from a single initial defect of a given type. Numerical results are presented for the family of three-state totalistic CAs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andrecut, M.: A simple three-states cellular automaton for modelling excitable media. International Journal of Modern Physics B 12, 601–607 (1998)
Baetens, J.M., De Baets, B.: Phenomenological study of irregular cellular automata based on Lyapunov exponents and Jacobians. Chaos 20, 033112 (2010)
Bagnoli, F., Rechtman, R., Ruffo, S.: Damage spreading and Lyapunov exponents in cellular automata. Physics Letters A 172, 34–38 (1992)
da Silva, R., Alves Jr., N.: Dynamic exponents of a probabilistic three-state cellular automaton. Physica A 350, 263–276 (2005)
Fisch, R., Gravner, J.: One-dimensional deterministic Greenberg-Hastings models. Complex Systems 9, 329–348 (1995)
Fisch, R., Gravner, J., Griffeath, D.: Metastability in the Greenberg-Hastings model. The Annals of Applied Probability 3, 329–348 (1993)
Greenberg, J.M., Hastings, S.P.: Spatial patterns for discrete models of diffusion in excitable media. SIAM Journal on Applied Mathematics 34, 515–523 (1978)
Langton, C.: Computation at the edge of chaos. Physica D 42, 12–37 (1990)
Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on Information Theory 22, 75–81 (1976)
Peltomäki, M., Rost, M., Alava, M.: Characterizing spatiotemporal patterns in three-state lattice models. Journal of Statistical Mechanics: Theory and Experiment P02042 (2009)
Potts, R.B.: Some generalized order-disorder transformations. Mathematical Proceedings of the Cambridge Philosophical Society 48, 106–109 (1952)
Reichenbach, T., Mobilia, M., Frey, E.: Self-organization of mobile populations in cyclic competition. Journal of Theoretical Biology 254, 368–383 (2008)
Sirakoulis, G.C., Karafyllidis, I., Thanailakis, A.: A cellular automaton model for the effects of population movement and vaccination on epidemic propagation. Ecological Modelling 133, 209–223 (2000)
von Neumann, J.: The general and logical theory of automata. In: Jeffres, L.A. (ed.) The Hixon Symposium on Cerebral Mechanisms in Behaviour, pp. 1–41. John Wiley & Sons, Pasadena (1951)
Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)
Wolfram, S.: A New Kind of Science. Wolfram Media, Inc., Champaign (2002)
Wu, F.: The Potts model. Reviews of Modern Physics 54, 235–268 (1982)
Wuensche, A.: Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. International Journal of Unconventional Computing 1, 375–398 (2005)
Zanette, D.H.: Multistate cellular automaton for reaction-diffusion processes. Physical Review A 46, 7573–7577 (1992)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Baetens, J.M., De Baets, B. (2014). Towards a Comprehensive Understanding of Multi-state Cellular Automata. In: WÄ…s, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-11520-7_3
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11519-1
Online ISBN: 978-3-319-11520-7
eBook Packages: Computer ScienceComputer Science (R0)