Skip to main content

Cellular Automaton Approach to Arching in Two-Dimensional Granular Media

  • Conference paper
Cellular Automata (ACRI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Included in the following conference series:

  • 3161 Accesses

Abstract

Clogging of granular materials and jamming of pedestrian crowds occur because of the formation of arches at bottlenecks. We propose a simple microscopic model that is able to reproduce oscillation phenomena due to formation and destabilization of arches in 2-dimensional flows. The dynamics of particles in front of a bottleneck is described by a one-dimensional stochastic cellular automaton on a semicircular geometry. The model predicts the existence of a critical bottleneck size for jamless particle flows and allows to determine the dependence of the jamming probability on the system size. The model can also be studied analytically and the results are in good agreement with simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Visser, T., Wysocki, A., Rex, M., Löwen, H., Royall, C.P., Imhof, A., van Blaaderen, A.: Lane formation in driven mixtures of oppositely charged colloids. Soft Matter 7, 2352 (2011)

    Article  Google Scholar 

  2. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature (London), 407, 487 (2000)

    Google Scholar 

  3. Helbing, D., Buzna, L., Johansson, A., Werner, T.: Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions. Transp. Sci. 39, 1 (2005)

    Article  Google Scholar 

  4. To, K., Lai, P.-Y., Pak, H.K.: Jamming of Granular Flow in a Two-Dimensional Hopper. Phys. Rev. Lett. 86, 71 (2001)

    Article  Google Scholar 

  5. Janda, A., Zuriguel, I., Garcimartín, A., Pugnaloni, L.A., Maza, D.: Jamming and critical outlet size in the discharge of a two-dimensional silo. Europhys. Lett. 84, 44002 (2008)

    Article  Google Scholar 

  6. Mankoc, C., Garcimartin, A., Zuriguel, I., Maza, D., Pugnaloni, L.A.: Role of vibrations in the jamming and unjamming of grains discharging from a silo. Phys. Rev. E 80, 011309 (2009)

    Google Scholar 

  7. Zuriguel, I., Garcimartín, A., Maza, D., Pugnaloni, L.A., Pastor, J.M.: Jamming during the discharge of granular matter from a silo. Phys. Rev. E 71, 051303 (2005)

    Google Scholar 

  8. Helbing, D., Johansson, A., Mathiesen, J., Jensen, M.H., Hansen, A.: Jamming of Granular Flow in a Two-Dimensional Hopper. Phys. Rev. Lett. 97, 168001 (2006)

    Article  Google Scholar 

  9. Janda, A., Maza, D., Garcimartín, A., Kolb, E., Lanuza, J., Clément, E.: Unjamming a granular hopper by vibration. Europhys. Lett. 87, 24002 (2009)

    Article  Google Scholar 

  10. Masuda, T., Nishinari, K., Schadschneider, A.: Critical Bottleneck Size for Jamless Particle Flows in Two Dimension. Phys. Rev. Lett. 112, 138701 (2014)

    Article  Google Scholar 

  11. Schütz, G.M.: Exactly Sovable Models for Many-Body Systems. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press (2001)

    Google Scholar 

  12. Schadschneider, A., Chowdhury, D., Nishinari, K.: Stochastic Transport in Complex Systems: From Molecules to Vehicles. Elsevier, Amsterdam (2010)

    Google Scholar 

  13. Derrida, B., Evans, M.R., Hakim, V., Pasquier, V.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A26, 1493 (1993)

    MathSciNet  Google Scholar 

  14. Krebs, K., Sandow, S.: Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A30, 3165 (1997)

    MathSciNet  Google Scholar 

  15. Klauck, K., Schadschneider, A.: On the ubiquity of matrix-product states in one-dimensional stochastic processes with boundary interactions. Physica A271, 102 (1999)

    Article  Google Scholar 

  16. Garcimartín, A., Zuriguel, I., Pugnaloni, L.A., Janda, A.: Shape of jamming arches in two-dimensional deposits of granular materials. Phys. Rev. E 82, 031306 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Masuda, T., Nishinari, K., Schadschneider, A. (2014). Cellular Automaton Approach to Arching in Two-Dimensional Granular Media. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_32

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics