Skip to main content

Estimating Speeds of Pedestrians in Real-World Using Computer Vision

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Abstract

This paper proposes a novel approach to a computer vision based automatic system for the estimation of pedestrian velocity in real world traffic systems in which a fixed camera is available. The paper will introduce the adopted framework, which includes a preprocessing phase, an identification and tracking phase, and a speed estimation final phase. Speed estimation, implying a conversion from image to real world coordinates, can be carried out with two different techniques that will be discussed in details and evaluated with reference to achieved results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pedestrian safety: A road safety manual for decision-makers and practitioners. Tech. rep., World Health Organization (2013)

    Google Scholar 

  2. Boltes, M., Seyfried, A.: Collecting pedestrian trajectories. Neurocomputing 100, 127–133 (2013)

    Article  Google Scholar 

  3. Conde, C., Serrano, A., Rodrıguez-Aragón, L., Pérez, J., Cabello, E.: An experimental approach to a real-time controlled traffic light multi-agent application. In: Proceedings of AAMAS 2004 Workshop on Agents in Traffic and Transportation, pp. 8–13 (2004)

    Google Scholar 

  4. Dernellis, A., Ashworth, R.: Pedestrian subways in urban areas: some observations concerning their use. Traffic Engineering & Control 35(1), 14–18 (1994)

    Google Scholar 

  5. Fascioli, A., Fedriga, R.I., Ghidoni, S.: Vision-based monitoring of pedestrian crossings. In: 14th International Conference on Image Analysis and Processing, ICIAP 2007, pp. 566–574. IEEE (2007)

    Google Scholar 

  6. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: Automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2756–2759. IEEE (2010)

    Google Scholar 

  7. Li, W., Wu, X., Matsumoto, K., Zhao, H.A.: Crowd foreground detection and density estimation based on moment. In: 2010 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), pp. 130–135. IEEE (2010)

    Google Scholar 

  8. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (clahe) for real-time image enhancement. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology 38(1), 35–44 (2004)

    Article  Google Scholar 

  9. Safety for Seniors Working Group (WA): Safety for Seniors: Final Report on Pedestrian Safety (1988)

    Google Scholar 

  10. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1994, pp. 593–600. IEEE (1994)

    Google Scholar 

  11. Sourtzinos, P., Makris, D., Remagnino, P.: Highly accurate estimation of pedestrian speed profiles from video sequences. In: Remagnino, P., Monekosso, D.N., Jain, L.C. (eds.) Innovations in Defence Support Systems – 3. SCI, vol. 336, pp. 71–81. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Tomasi, C., Kanade, T.: Detection and tracking of point features. School of Computer Science, Carnegie Mellon Univ. (1991)

    Google Scholar 

  13. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation 3(4), 323–344 (1987)

    Article  Google Scholar 

  14. Vceraraghavan, H., Masoud, O., Papanikolopoulos, N.: Vision-based monitoring of intersections. In: Proceedings of the IEEE 5th International Conference on Intelligent Transportation Systems, pp. 7–12. IEEE (2002)

    Google Scholar 

  15. Vizzari, G., Bandini, S.: Studying pedestrian and crowd dynamics through integrated analysis and synthesis. IEEE Intelligent Systems 28(5), 56–60 (2013)

    Article  Google Scholar 

  16. Zamir, A.R., Dehghan, A., Shah, M.: GMCP-tracker: Global multi-object tracking using generalized minimum clique graphs. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 343–356. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Khan, S.D., Porta, F., Vizzari, G., Bandini, S. (2014). Estimating Speeds of Pedestrians in Real-World Using Computer Vision. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_55

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics