Skip to main content

Modeling Disruption and Recovery of Traffic in Road Networks

  • Conference paper
Cellular Automata (ACRI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Included in the following conference series:

  • 3140 Accesses

Abstract

We study the impact of disruptions on traffic networks, and the relaxation of the system after the removal of the disruption. We model the steady-state density along the disrupted route using a simple phenomenological model. We then combine this model with domain wall theory to analyze the transient behavior of the system. We compare the predictions produced by these macroscopic models with simulations of a stochastic cellular automaton model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Diedrich, G., Santen, L., Schadschneider, A., Zittartz, J.: Effects of on- and off-ramps in cellular automata models for traffic flow. International Journal of Modern Physics C 11(3), 519–529 (2002)

    Google Scholar 

  2. Ebersbach, A., Schneider, J.J.: Two-lane traffic with places of obstruction to traffic. International Journal of Modern Physics C 15, 535–544 (2004)

    Article  Google Scholar 

  3. de Gier, J., Garoni, T.M., Rojas, O.: Traffic flow on realistic road networks with adaptive traffic lights. Journal of Statistical Mechanics: Theory and Experiment 2011, P04008 (2011)

    Google Scholar 

  4. Hanaura, H., Nagatani, T., Tanaka, K.: Jam formation in traffic flow on a highway with some slowdown sections. Physica A: Statistical Mechanics and its Applications 374, 419–430 (2007)

    Article  Google Scholar 

  5. Ishibashi, Y., Fukui, M.: The bottleneck effect on high-speed car traffic. Journal of the Physical Society of Japan 70, 1237–1239 (2001)

    Article  Google Scholar 

  6. Janowsky, S.A., Lebowitz, J.L.: Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process. Physical Review A 45, 618–625 (1992)

    Article  Google Scholar 

  7. Janowsky, S.A., Lebowitz, J.L.: Exact results for the asymmetric simple exclusion process with a blockage. Journal of Statistical Physics 77, 35–51 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Jia, B., Jiang, R., Wu, Q.S.: The traffic bottleneck effects caused by the lane closing in the cellular automata model. International Journal of Modern Physics C 14, 1295–1303 (2003)

    Article  Google Scholar 

  9. Kolomeisky, A.B.: Asymmetric simple exclusion model with local inhomogeneity. Journal of Physics A: Mathematical and General 31, 1153–1164 (1998)

    Article  MATH  Google Scholar 

  10. Kolomeisky, A.B., Schutz, G.M., Kolomeisky, E.B., Straley, J.P.: Phase diagram of one-dimensional driven lattice gases with open boundaries. Journal of Physics A: Mathematical and General 31, 6911–6919 (1998)

    Article  MATH  Google Scholar 

  11. Komada, K., Masukura, S., Nagatani, T.: Effect of gravitational force upon traffic flow with gradients. Physica A 388, 2880–2894 (2009)

    Article  Google Scholar 

  12. Nagai, R., Hanaura, H., Tanaka, K., Nagatani, T.: Discontinuity at edge of traffic jam induced by slowdown. Physica A: Statistical Mechanics and its Applications 364, 464–472 (2006)

    Article  Google Scholar 

  13. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. Journal de Physique I 2, 2221–2229 (1992)

    Article  Google Scholar 

  14. Santen, L., Appert, C.: The asymmetric exclusion process revisited: Fluctuations and dynamics in the domain wall picture. Journal of Statistical Physics 106, 187–199 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tanaka, K., Nagai, R., Nagatani, T.: Traffic jam and discontinuity induced by slowdown in two-stage optimal-velocity model. Physica A: Statistical Mechanics and its Applications 370, 756–768 (2006)

    Article  Google Scholar 

  16. Zhang, J., Li, X., Wang, R., Sun, X., Cui, X.: Traffic bottleneck characteristics caused by the reduction of lanes in an optimal velocity model. Physica A 391, 2381–2389 (2012)

    Article  Google Scholar 

  17. Zhang, L., de Gier, J., Garoni, T.M.: Traffic disruption and recovery in road networks. Physica A: Statistical Mechanics and its Applications 401, 82–102 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, L., Garoni, T.M. (2014). Modeling Disruption and Recovery of Traffic in Road Networks. In: WÄ…s, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_68

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics