Skip to main content

How Agents Can Form a Specific Pattern

  • Conference paper
Cellular Automata (ACRI 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8751))

Included in the following conference series:

Abstract

A multi-agent system is considered, comprised of a square 2D cell field of cells with uniform agents controlled by finite state machines (FSMs). Each cell contains a particle with one out of four colors, which can be changed by the agents. Initially the agents and colors are randomly distributed. The objective is to form a specific target pattern belonging to a predefined pattern class. The target patterns (path patterns) shall consist of preferably long narrow paths with the same color. The quality of the path patterns is measured by a degree of order, which is computed by counting matching 3 x 3 patterns (templates). The used agents can perform 32 actions, combinations of moving, turning and coloring. They react on the own color, the color in front, and blocking situations. The agents’ behavior is determined by an embedded FSM with 6 states. For a given 8 x 8 field, near optimal FSMs were evolved by a genetic procedure separately for k = 1  ..  48 agents. The evolved agents are capable to form path patterns with a high degree of order. Agents, evolved for a 8 x 8 field, are able to structure a 16 x 16 field successfully, too. The whole multi-agent system was modeled by cellular automata. In the implementation of the system, the CA-w model (cellular automata with write access) was used in order to reduce the implementation effort and speed up the simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shi, D., He, P., Lian, J., Chaud, X., et al.: Magnetic alignment of carbon nanofibers in polymer composites and anisotropy of mechanical properties. Journal of Applied Physics 97, 064312 (2005)

    Google Scholar 

  2. Itoh, M., Takahira, M., Yatagai, T.: Spatial Arrangement of Small Particles by Imaging Laser Trapping System. Optical Review 5(I), 55–58 (1998)

    Article  Google Scholar 

  3. Jiang, Y., Narushima, T., Okamoto, H.: Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nature Physics 6, 1005–1009 (2010)

    Article  Google Scholar 

  4. Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior of several moving creatures. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Hoffmann, R., Désérable, D.: CA Agents for All-to-All Communication Are Faster in the Triangulate Grid. In: Malyshkin, V. (ed.) PaCT 2013. LNCS, vol. 7979, pp. 316–329. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  6. Komann, M., Ediger, P., Fey, D., Hoffmann, R.: On the Effectiveness of Evolution Compared to Time-Consuming Full Search of Optimal 6-State Automata. In: Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 280–291. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Ediger, P., Hoffmann, R.: CA Models for Target Searching Agents. Automata 2009, J. Electronic Notes in Theor. Comp. Science (ENTCS) 252, 41–54 (2009)

    Article  MathSciNet  Google Scholar 

  8. Komann, M., Mainka, A., Fey, D.: Comparison of evolving uniform, non-uniform cellular automaton, and genetic programming for centroid detection with hardware agents. In: Malyshkin, V. (ed.) PaCT 2007. LNCS, vol. 4671, pp. 432–441. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Mesot, B., Sanchez, E., Peña, C.-A., Perez-Uribe, A.: SOS++: Finding Smart Behaviors Using Learning and Evolution. In: Artificial Life VIII, pp. 264–273. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Blum, M., Sakoda, W.: On the capability of finite automata in 2 and 3 dimensional space. In: 18th IEEE Symp. on Foundations of Computer Science, pp. 147–161 (1977)

    Google Scholar 

  11. Hoffmann, R.: Rotor-routing algorithms described by CA–w. Acta Phys. Polonica B Proc. Suppl. 5(1), 53–68 (2012)

    Article  Google Scholar 

  12. Hoffmann, R.: The GCA-w massively parallel model. In: Malyshkin, V. (ed.) PaCT 2009. LNCS, vol. 5698, pp. 194–206. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Hoffmann, R.: GCA–w algorithms for traffic simulation. Acta Phys. Polonica B Proc. Suppl. 4(2), 183–200 (2011)

    Article  Google Scholar 

  14. Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Biological Pattern Formation. Birkäuser (2005)

    Google Scholar 

  15. Bonabeau, E.: From Classical Models of Morphogenesis to Agent-Based Models of Pattern Formation. Santa Fe Institute Working Paper: 1997-07-063

    Google Scholar 

  16. Hamann, H.: Pattern Formation as a Transient Phenomenon in the Nonlinear Dynamics of a Multi-Agent System. In: Proc. of MATHMOD 2009 (2009)

    Google Scholar 

  17. Nagpal, R.: Programmable Pattern-Formation and Scale-Independence. MIT Artificial Intelligence Lab (2002)

    Google Scholar 

  18. Spicher, A., Fatèz, N., Simonin, O.: From Reactive Multi-Agents Models to Cellular Automata - Illustration on a Diffusion-Limited Aggregation Model. In: ICAART 2009, pp. 422–429 (2009)

    Google Scholar 

  19. Bandini, S., Vanneschi, L., Wuensche, A., Shehata, A.B.: A Neuro-Genetic Framework for Pattern Recognition in Complex Systems. Fundam. Inform. 87(2), 207–226 (2008)

    MATH  MathSciNet  Google Scholar 

  20. Junges, R., Klügl, F.: Programming Agent Behavior by Learning in Simulation Models. Applied Artificial Intelligence 26(4), 349–375 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Hoffmann, R. (2014). How Agents Can Form a Specific Pattern. In: Wąs, J., Sirakoulis, G.C., Bandini, S. (eds) Cellular Automata. ACRI 2014. Lecture Notes in Computer Science, vol 8751. Springer, Cham. https://doi.org/10.1007/978-3-319-11520-7_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11520-7_70

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11519-1

  • Online ISBN: 978-3-319-11520-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics