Skip to main content

Exploiting Non-negative Matrix Factorization with Linear Constraints in Noise-Robust Speaker Identification

  • Conference paper
Speech and Computer (SPECOM 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8773))

Included in the following conference series:

  • 1369 Accesses

Abstract

This paper exploits non-negative matrix factorization (NMF)-based method for speech enhancement within speaker identification framework. The proposed algorithm considers speech atoms in deterministic way as a sum of harmonically-related sinusoids in spectral domain. This approach allows us to estimate specific signal structure of vowel signal in the presence of noise in order to make an efficient noise reduction using only noise exemplars. The experiments of the present research in application to the speaker identification are conducted on the computational hearing in multisource environments (CHiME) dataset. The obtained results demonstrate the effectiveness of the preprocessing enhancement, and outperforming the general NMF-based speech enhancer. Further studies show the channel compensation effect of the proposed method leads to performance comparable to the common mismatch reduction methods such as feature warping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Saeidi, R., Hurmalainen, A., Virtanen, T., van Leeuwen, D.A.: Exemplar-based Sparse Representation and Sparse Discrimination for Noise Robust Speaker Identification. In: Proc. Odyssey: The Speaker and Language Recognition Workshop, Singapore (2012)

    Google Scholar 

  2. Hurmalainen, A., Saeidi, R., Virtanen, T.: Group Sparsity for Speaker Identity Discrimination in Factorisation-based Speech Recognition. In: Proc. of the Interspeech (2012)

    Google Scholar 

  3. Wu, Q., Liu, J., Sun, J., Cichoki, A.: Shift-invariant Features with Multiple Factors for Robust Text-independent Speaker Identifcation, J. of Computational Information Systems 8(21), 8937–8944 (2012)

    Google Scholar 

  4. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  5. Bertin, N., Badeau, R., Vincent, E.: Fast bayesian nmf algorithms enforcing harmonicity and temporal continuity in polyphonic music transcription. In: IEEE Workshop on App. of Signal Proc. to Audio and Acoustics, pp. 29–32 (2009)

    Google Scholar 

  6. Virtanen, T.: Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria. IEEE Trans. on Audio, Speech and Language Processing 15(3) (2007)

    Google Scholar 

  7. Schmidt, M.N., Olsson, R.K.: Single-Channel Speech Separation using Sparse Non-Negative Matrix Factorization. In: Proc. of Interspeech, pp. 2614–2617 (2006)

    Google Scholar 

  8. Schmidt, M.N., Larsen, J., Hsiao, F.-T.: Wind Noise Reduction using Non-Negative Sparse Coding. In: IEEE Workshop on Machine Learning for Signal Proc., pp. 431–436 (2007)

    Google Scholar 

  9. Cauchi, B., Goetze, S., Doclo, S.: Reduction of non-stationary noise for a robotic living assistant using sparse non-negative matrix factorization. In: Proc. of the 1st Workshop on Speech and Multimodal Interaction in Assistive Environments, pp. 28–33 (2012)

    Google Scholar 

  10. Berry, M.W., et al.: Algorithms and applications for approximate nonnegative matrix factorization 52(1), 155–173 (2007)

    Google Scholar 

  11. Doroshin, D., Tkachenko, M., Lubimov, N., Kotov, M.: Application of l 1 Estimation of Gaussian Mixture Model Parameters for Language Identification. In: Železný, M., Habernal, I., Ronzhin, A., et al. (eds.) SPECOM 2013. LNCS, vol. 8113, pp. 41–45. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Lyubimov, N., Kotov, M.: Non-negative Matrix Factorization with Linear Constraints for Single-Channel Speech Enhancement. In: Proc. of Interspeech (2013)

    Google Scholar 

  13. Christensen, H., Barker, J., Ma, N., Green, P.: The CHiME corpus: a resource and a challenge for computational hearing in multisource environments. In: Proc. Interspeech, pp. 1918–1921 (2010)

    Google Scholar 

  14. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing 10(1–3), 19–41 (2000)

    Article  Google Scholar 

  15. Pelecanos, J., Sridharan, S.: Feature Warping for Robust Speaker Verification. In: Proc. Odyssey: the speaker recognition workshop, Crete (2001)

    Google Scholar 

  16. Ephraim, Y., Malah, D.: Speech enhancement using a minimum mean-square error log-spectral amplitude estimator. IEEE Trans. on Acoustic, Speech and Signal Proc. 33(2), 443–445 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lyubimov, N., Nastasenko, M., Kotov, M., Doroshin, D. (2014). Exploiting Non-negative Matrix Factorization with Linear Constraints in Noise-Robust Speaker Identification. In: Ronzhin, A., Potapova, R., Delic, V. (eds) Speech and Computer. SPECOM 2014. Lecture Notes in Computer Science(), vol 8773. Springer, Cham. https://doi.org/10.1007/978-3-319-11581-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11581-8_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11580-1

  • Online ISBN: 978-3-319-11581-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics