Skip to main content

Significant Route Discovery: A Summary of Results

  • Conference paper
Geographic Information Science (GIScience 2014)

Abstract

Given a spatial network and a collection of activities (e.g., pedestrian fatality reports, crime reports), Significant Route Discovery (SRD) finds all shortest paths in the spatial network where the concentration of activities is unusually high (i.e., statistically significant). SRD is important for societal applications in transportation safety, public safety, or public health such as finding routes with significant concentrations of accidents, crimes, or diseases. SRD is challenging because 1) there are a potentially large number of candidate routes (~1016) in a given dataset with millions of activities or road network nodes and 2) significance testing does not obey the monotonicity property. Previous work focused on finding circular areas of concentration, limiting its usefulness for finding significant linear routes on a network. SaTScan may miss many significant routes since a large fraction of the area bounded by circles for activities on a path will be empty. This paper proposes a novel algorithm for discovering statistically significant routes. To improve performance, the proposed algorithm features algorithmic refinements that prune unlikely paths and speeds up Monte Carlo simulation. We present a case study comparing the proposed statistically significant network-based analysis (i.e., shortest paths) to a statistically significant geometry-based analysis (e.g., circles) on pedestrian fatality data. Experimental results on real data show that the proposed algorithm, with our algorithmic refinements, yields substantial computational savings without reducing result quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ernst, M., Lang, M., Davis, S.: Dangerous by design: Solving the epidemic of preventable pedestrian deaths. Transportation for America: Surface Transportation Policy Partnership, Washington, DC (2011)

    Google Scholar 

  2. National Highway Traffic Safety Administration (NHTSA): Fatality Analysis Reporting System (FARS) Encyclopedia, http://www.nhtsa.gov/FARS

  3. Kulldorff, M.: A spatial scan statistic. Communications in Statistics-Theory and Methods 26(6), 1481–1496 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Neill, D.B., Moore, A.W.: Rapid detection of significant spatial clusters. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 256–265. ACM (2004)

    Google Scholar 

  5. Kulldorff, M., Mostashari, F., Duczmal, L., Katherine Yih, W., Kleinman, K., Platt, R.: Multivariate scan statistics for disease surveillance. Statistics in Medicine 26(8), 1824–1833 (2007)

    Article  MathSciNet  Google Scholar 

  6. Kulldorff, M.: Spatial scan statistics: Models, calculations, and applications. In: Scan Statistics and Applications, pp. 303–322. Springer (1999)

    Google Scholar 

  7. Costa, M.A., Assunção, R.M., Kulldorff, M.: Constrained spanning tree algorithms for irregularly-shaped spatial clustering. Computational Statistics & Data Analysis 56(6), 1771–1783 (2012)

    Article  MathSciNet  Google Scholar 

  8. Duczmal, L., Assuncao, R.: A simulated annealing strategy for the detection of arbitrarily shaped spatial clusters. Computational Statistics & Data Analysis 45(2), 269–286 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Shi, L., Janeja, V.P.: Anomalous window discovery for linear intersecting paths. IEEE Transactions on Knowledge and Data Engineering 23(12), 1857–1871 (2011)

    Article  Google Scholar 

  10. Janeja, V.P., Atluri, V.: Ls 3: A linear semantic scan statistic technique for detecting anomalous windows. In: Proceedings of the 2005 ACM Symposium on Applied Computing, pp. 493–497. ACM (2005)

    Google Scholar 

  11. Li, X., Han, J., Lee, J.-G., Gonzalez, H.: Traffic density-based discovery of hot routes in road networks. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp. 441–459. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  12. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  13. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  14. Oliver, D., Bannur, A., Kang, J.M., Shekhar, S., Bousselaire, R.: A K-Main Routes Approach to Spatial Network Activity Summarization: A Summary of Results. In: IEEE International Conference on Data Mining Workshops (ICDMW), pp. 265–272 (2010)

    Google Scholar 

  15. Buchin, K., Cabello, S., Gudmundsson, J., Löffler, M., Luo, J., Rote, G., Silveira, R.I., Speckmann, B., Wolle, T.: Finding the most relevant fragments in networks. J. Graph Algorithms Appl. 14(2), 307–336 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chawla, S., Roughgarden, T.: Single-source stochastic routing. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM 2006. LNCS, vol. 4110, pp. 82–94. Springer, Heidelberg (2006)

    Google Scholar 

  17. Shekhar, S., Liu, D.: CCAM: A connectivity-clustered access method for networks and network computations. IEEE Transactions on Knowledge and Data Engineering 9(1), 102–119 (1997)

    Article  Google Scholar 

  18. Cormen, T.: Introduction to algorithms. The MIT press (2001)

    Google Scholar 

  19. Kulldorff, M., Rand, K., Gherman, G., Williams, G., DeFrancesco, D.: SaTScan v 2.1: Software for the spatial and space-time scan statistics. National Cancer Institute, Bethesda (1998)

    Google Scholar 

  20. The QGIS Project: Quantum GIS OpenLayers Plugin, http://plugins.qgis.org/plugins/openlayers_plugin/ (accessed: January 23, 2014)

  21. US Census Bureau: Census TIGER/Line Shapefiles (2010), http://www.census.gov/geo/maps-data/data/tiger-line.html (accessed: January 23, 2014)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Oliver, D. et al. (2014). Significant Route Discovery: A Summary of Results. In: Duckham, M., Pebesma, E., Stewart, K., Frank, A.U. (eds) Geographic Information Science. GIScience 2014. Lecture Notes in Computer Science, vol 8728. Springer, Cham. https://doi.org/10.1007/978-3-319-11593-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11593-1_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11592-4

  • Online ISBN: 978-3-319-11593-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics