Abstract
We study the convex relaxation of clustering and hamming embedding, focusing on the asymmetric case (co-clustering and asymmetric hamming embedding), understanding their relationship to LSH as studied by Charikar (2002) and to the max-norm ball, and the differences between their symmetric and asymmetric versions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Naor, A.: Approximating the cut-norm via grothendieck’s inequality. SIAM Journal on Computing 35(4), 787–803 (2006)
Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: FOCS, pp. 459–468 (2006)
Arora, S., Berger, E., Hazan, E., Kindler, G., Safra, M.: On non-approximability for quadratic programs. In: FOCS, pp. 206–215 (2005)
Banerjee, A., Dhillon, I., Ghosh, J., Merugu, S., Modha, D.S.: A generalized maximum entropy approach to bregman co-clustering and matrix approximation. In: SIGKDD, pp. 509–514 (2004)
Buchok, L.V.: Two new approaches to obtaining estimates in the danzer-grunbaum problem. Mathematical Notes 87(4), 489–496 (2010)
Charikar, M., Wirth, A.: Maximizing quadratic programs: Extending grothendieck’s inequality. In: FOCS, pp. 54–60 (2004)
Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC (2002)
Danzer, L., Grünbaum, B.: Über zwei probleme bezüglich konvexer körper von p. erdös und von vl klee. Mathematische Zeitschrift 79(1), 95–99 (1962)
Dhillon, I., Subramanyam, M., Dharmendra, S.M.: Information-theoretic co-clustering. In: SIGKDD (2003)
Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. VLDB 99, 518–529 (1999)
Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensionality. In: STOC, pp. 604–613 (1998)
Jalali, A., Chen, Y., Sanghavi, S., Xuo, H.: Clustering partially observed graphs via convex optimization. In: ICML (2011)
Jalali, A., Srebro, N.: Clustering using max-norm constrained optimization. In: ICML (2012)
Krivine, J.L.: Sur la constante de grothendieck. C. R. Acad. Sci. Paris Ser. A-B 284, 445–446 (1977)
Neyshabur, B., Yadollahpour, P., Makarychev, Y., Salakhutdinov, R., Srebro, N.: The power of asymmetry in binary hashing. In: NIPS (2013)
Srebro, N., Rennie, J., Jaakkola, T.: Maximum margin matrix factorization. In: NIPS (2005)
Srebro, N., Shraibman, A.: Rank, trace-norm and max-norm. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 545–560. Springer, Heidelberg (2005)
Thompson, A.C.: Minkowski Geometry. Cambridge University Press (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Neyshabur, B., Makarychev, Y., Srebro, N. (2014). Clustering, Hamming Embedding, Generalized LSH and the Max Norm. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2014. Lecture Notes in Computer Science(), vol 8776. Springer, Cham. https://doi.org/10.1007/978-3-319-11662-4_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-11662-4_22
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11661-7
Online ISBN: 978-3-319-11662-4
eBook Packages: Computer ScienceComputer Science (R0)