Abstract
We present SigVer3D – a convenient authentication method for users of mobile devices with built-in accelerometers. The method works by analyzing streams of signals returned by a mobile device’s accelerometer when the user uses the device to draw his (her) signature in 3-D space. We cast authentication as a binary classification problem and train SVM classifiers to identify successful logins. We explore two types of features to represent signal streams, which can be computed very fast even in devices with limited processing power, and demonstrate their effectiveness using gesture data collected from a group of subjects. Experimental results show that the method can differentiate between genuine users and imposters with average EER (equal error rate) of 0.8%. Given the wide availability of accelerometers in mobile devices, the method provides a promising complement to existing mobile authentication systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Casanova, J.G., Ávila, C.S., de Santos Sierra, A., del Pozo, G.B., Vera, V.J.: A real-time in-air signature biometric technique using a mobile device embedding an accelerometer. In: Zavoral, F., Yaghob, J., Pichappan, P., El-Qawasmeh, E. (eds.) NDT 2010. CCIS, vol. 87, pp. 497–503. Springer, Heidelberg (2010)
Cho, D.H., Park, K.R., Rhee, D.W., Kim, Y., Yang, J.: Pupil and iris localization for iris recognition in mobile phones. In: Seventh ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, SNPD 2006, pp. 197–201. IEEE (2006)
Chong, M.K., Marsden, G.: Exploring the use of discrete gestures for authentication. In: Gross, T., Gulliksen, J., Kotzé, P., Oestreicher, L., Palanque, P., Prates, R.O., Winckler, M. (eds.) INTERACT 2009. LNCS, vol. 5727, pp. 205–213. Springer, Heidelberg (2009)
Clarke, N.L., Furnell, S.M.: Authenticating mobile phone users using keystroke analysis. International Journal of Information Security 6(1), 1–14 (2007)
Farella, E., O’Modhrain, S., Benini, L., Riccó, B.: Gesture signature for ambient intelligence applications: A feasibility study. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 288–304. Springer, Heidelberg (2006)
Gafurov, D., Helkala, K., Søndrol, T.: Biometric gait authentication using accelerometer sensor. Journal of Computers 1(7), 51–59 (2006)
Google Glass, http://www.google.com/glass (accessed on May 25, 2015)
Hadid, A., Heikkila, J.Y., Silvén, O., Pietikainen, M.: Face and eye detection for person authentication in mobile phones. In: First ACM/IEEE International Conference on Distributed Smart Cameras, ICDSC 2007. IEEE (2007)
Hooper, J., Preston, A., Balaam, M., Seedhouse, P., Jackson, D., Pham, C., Ladha, C., Ladha, K., Ploetz, T., Olivier, P.: The French Kitchen: Task-Based Learning in an Instrumented Kitchen. In: Proc. of the 14th ACM International Conference on Ubiquitous Computing, Ubicomp 2012, pp. 193–202 (2012)
Jain, A.K., Griess, F.D., Connell, S.D.: On-line signature verification. Pattern Recognition 35(12), 2963–2972 (2002)
Jain, A.K., Ross, A., Prabhakar, S.: An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 4–20 (2004)
Ketabdar, H., Yüksel, K.A., Yüksel, K.A., Jahnbekam, A., Roshandel, M., Skirpo, D.: Magisign: User identification/authentication based on 3d around device magnetic signatures. In: The Fourth International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies, UBICOMM 2010, pp. 31–34 (2010)
Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: User evaluation of lightweight user authentication with a single tri-axis accelerometer. In: Proceedings of the 11th International Conference on Human-Computer Interaction with Mobile Devices and Services, p. 15. ACM (2009)
Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: Accelerometer-based personalized gesture recognition and its applications. Pervasive and Mobile Computing 5(6), 657–675 (2009)
Liu, S., Silverman, M.: A practical guide to biometric security technology. IT Professional 3(1), 27–32 (2001)
LSM330DLC Dataset, http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00037200.pdf (accessed on May 25, 2015)
Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of fingerprint recognition. Springer (2009)
Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of artificial gummy fingers on fingerprint systems. In: Electronic Imaging 2002, pp. 275–289. International Society for Optics and Photonics (2002)
Nike+ FuelBand, http://www.nike.com/us/en_us/c/nikeplus-fuelband (accessed on May 25, 2015)
Okumura, F., Kubota, A., Hatori, Y., Matsuo, K., Hashimoto, M., Koike, A.: A study on biometric authentication based on arm sweep action with acceleration sensor. In: International Symposium on Intelligent Signal Processing and Communications, ISPACS 2006, pp. 219–222. IEEE (2006)
Peple Smartwatch, https://getpebble.com (accessed on May 25, 2015)
Pham, C., Diep, N.N., Phuong, T.M.: A wearable sensor based approach to real-time fall detection and fine-grained activity recognition. Journal of Mobile Multimedia 9(1-2), 15–26 (2013)
Pham, C., Hooper, C., Lindsay, S., Jackson, D., Shearer, J., Wagner, J., Ladha, C., Ladha, K., Plotz, T., Olivier, P.: The Ambient Kitchen: A Pervasive Sensing Environment for Situated Services. In: Proc. of the ACM Designing Interactive Systems Conference, DIS 2012 (2012)
Pham, C., Phuong, T.M.: Real-time fall detection and activity recognition using low-cost wearable sensors. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part I. LNCS, vol. 7971, pp. 673–682. Springer, Heidelberg (2013)
Plamondon, R., Lorette, G.: Automatic signature verification and writer identification the state of the art. Pattern Recognition 22(2), 107–131 (1989)
Ross, A., Jain, A.K.: A prototype hand geometry-based verification system. In: Proceedings of 2nd Conference on Audio and Video Based Biometric Person Authentication, pp. 166–171 (1999)
Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech and Signal Processing 26(1), 43–49 (1978)
Shu, Y., Gu, Y., Chen, J.: Dynamic authentication with sensory information for the access control systems (2014)
Uludag, U., Pankanti, S., Prabhakar, S., Jain, A.K.: Biometric cryptosystems: issues and challenges. Proceedings of the IEEE 92(6), 948–960 (2004)
Weka, http://www.cs.waikato.ac.nz/ml/weka (accessed on May 25, 2015)
Wiedenbeck, S., Waters, J., Birget, J.C., Brodskiy, A., Memon, N.: Authentication using graphical passwords: effects of tolerance and image choice. In: Proceedings of the 2005 Symposium on Usable Privacy and Security, pp. 1–12. ACM (2005)
Woo, R.H., Park, A., Hazen, T.J.: The MIT mobile device speaker verification corpus: data collection and preliminary experiments. In: Speaker and Language Recognition Workshop, IEEE Odyssey 2006, pp. 1–6. IEEE (2006)
Zaharis, A., Martini, A., Kikiras, P., Stamoulis, G.: “User Authentication Method and Implementation Using a Three-Axis Accelerometer”. In: Chatzimisios, P., Verikoukis, C., Santamaría, I., Laddomada, M., Hoffmann, O. (eds.) MOBILIGHT 2010. LNICST, vol. 45, pp. 192–202. Springer, Heidelberg (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ngoc Diep, N., Pham, C., Minh Phuong, T. (2015). SigVer3D: Accelerometer Based Verification of 3-D Signatures on Mobile Devices. In: Nguyen, VH., Le, AC., Huynh, VN. (eds) Knowledge and Systems Engineering. Advances in Intelligent Systems and Computing, vol 326. Springer, Cham. https://doi.org/10.1007/978-3-319-11680-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-11680-8_28
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11679-2
Online ISBN: 978-3-319-11680-8
eBook Packages: EngineeringEngineering (R0)