Skip to main content

PSO with Tikhonov Regularization for the Inverse Problem in Electrocardiography

  • Conference paper
  • First Online:
Artificial Evolution (EA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8752))

Abstract

In this paper we present a nearest neighbor particle swarm optimization (PSO) algorithm applied to the numerical analysis of the inverse problem in electrocardiography. A two-step algorithm is proposed based on the application of the modified PSO algorithm with the Tikhonov regularization method to calculate the potential distribution in the heart. The PSO improvements include the use of the neighborhood particles as a strategy to balance exploration and exploitation in order to prevent premature convergences and produce a better local search. In the literature the inverse problem in electrocardiography is solved using the minimum energy norm in a Tikhonov regularization scheme. Although this approach solves the system, the solution may not have a meaning in the physical sense. Comparing to the classical reconstruction, the two-step PSO algorithm improves the accuracy of the solution with respect to the original distribution. Finally, to validate our results, we create a distribution over the heart by using a model of electrical activity (Bidomain model) coupled with a volume conductor model for the torso. Then, using our method, we make the reconstruction of the potential distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IHME: GBD Cause Patterns. Institute for Health Metrics and Evaluation (2013). http://www.healthmetricsandevaluation.org/gbd/visualizations/gbd-cause-patterns

  2. Gulrajani, R.M.: The forward and inverse problems of electrocardiography. IEEE Eng. Med. Biol. Mag. 17(5), 84–101, 122 (1998)

    Google Scholar 

  3. Rudy, Y.: Noninvasive imaging of cardiac electrophysiology and arrhythmia. Ann. N. Y. Acad. Sci. 1188, 214–221 (2010)

    Article  Google Scholar 

  4. Yamashita, Y.: Theoretical studies on the inverse problem in electrocardiography and the uniqueness of the solution. IEEE Trans. Biomed. Eng. BME–29(11), 719–725 (1982)

    Article  Google Scholar 

  5. Jiang, M., Huang, W., Xia, L., Shou, G.: The use of genetic algorithms for optimizing the regularized solutions of the Ill-posed problems. In: Proceedings of the 2008 Second International Symposium on Intelligent Information Technology Application, vol. 3, pp. 119–123. IEEE Computer Society (2008)

    Google Scholar 

  6. Chen, M.-Y., Hu, G., He, W., Yang, Y.-L., Zhai, J.-Q.: A reconstruction method for electrical impedance tomography using particle swarm optimization. In: Li, K., Fei, M., Jia, L., Irwin, G.W. (eds.) LSMS/ICSEE 2010. LNCS, vol. 6329, pp. 342–350. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  8. Shi, Y., Eberhart, R.C.: Empirical study of particle swarm optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, vol. 3 (1999)

    Google Scholar 

  9. Poli, R.: Analysis of the publications on the applications of particle swarm optimisation. J. Artif. Evol. Appl. (2008)

    Google Scholar 

  10. Donelli, M., Franceschini, G., Martini, A., Massa, A.: An integrated multiscaling strategy based on a particle swarm algorithm for inverse scattering problems. IEEE Trans. Geosci. Remote Sens. 44(2), 298–312 (2006)

    Article  Google Scholar 

  11. Fernández Martínez, J.L., García Gonzalo, E., Fernández Álvarez, J.P., Kuzma, H.A., Menéndez Pérez, C.O.: PSO: a powerful algorithm to solve geophysical inverse problems: application to a 1D-DC resistivity case. J. Appl. Geophys. 71(1), 13–25 (2010)

    Article  Google Scholar 

  12. Liu, F.-B.: Particle Swarm Optimization-based algorithms for solving inverse heat conduction problems of estimating surface heat flux. Int. J. Heat Mass Transf. 55(78), 2062–2068 (2012)

    Article  Google Scholar 

  13. Martínez-Molina, M., Moreno-Armendáriz, M.A., Cruz-Cortés, N., Seck Tuoh Mora, J.C.: Modeling prey-predator dynamics via particle swarm optimization and cellular automata. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011, Part II. LNCS, vol. 7095, pp. 189–200. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Sarikaya, S., Weber, G.-W., Doğrusöz, Y.S.: Combination of conventional regularization methods and genetic algorithm for solving the inverse problem of electrocardiography. In: 2010 5th International Symposium on Health Informatics and Bioinformatics (HIBIT), pp. 13–20 (2010)

    Google Scholar 

  15. Cary, S.E., Throne, R.D.: Neural network approach to the inverse problem of electrocardiography. Comput. Cardiol. 1995, 87–90 (1995)

    Google Scholar 

  16. Jiang, M., Xia, L., Shou, G.: The use of genetic algorithms for solving the inverse problem of electrocardiography. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ’06, pp. 3907–3910 (2006)

    Google Scholar 

  17. Angeline, P.J.: Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In: William Porto, V., Saravanan, N., Waagen, D.E., Eiben, A.E. (eds.) Proceedings of the 7th International Conference on Evolutionary Programming VII (EP ’98), pp. 601–610. Springer, London (1998)

    Google Scholar 

  18. Krink, T., Vesterstrom, J.S., Riget, J.: Particle swarm optimisation with spatial particle extension. In: Proceedings of the 2002 Congress Evolutionary Computation (CEC ’02), vol. 2, pp. 1474–1479. IEEE Computer Society (2002)

    Google Scholar 

  19. Cui, Z., Chu, Y., Cai, X.: Nearest neighbor interaction PSO based on small-world model. In: Corchado, E., Yin, H. (eds.) IDEAL 2009. LNCS, vol. 5788, pp. 633–640. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  20. Kennedy, J.: Small worlds and mega-minds: effects of neighborhood topology on particle swarm performance. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 99, vol. 3 (1999)

    Google Scholar 

  21. Cervantes, A., Galvn, I.M., Isasi, P.: AMPSO: a new particle swarm method for nearest neighborhood classification. Trans. Sys. Man Cyber. Part B 39, 5 (2009)

    Google Scholar 

  22. Akat, S.B., Gazi, V.: Particle swarm optimization with dynamic neighborhood topology: Three neighborhood strategies and preliminary results. In: Swarm Intelligence Symposium, SIS 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  23. Aster, R.C., Borchers, B., Thurber, C.H.: Chapter Four - Tikhonov Regularization. In: Aster, R.C., Borchers, B., Thurber, C.H. (eds.) Parameter Estimation and Inverse Problems, 2nd edn, pp. 93–127. Academic Press, Boston (2013)

    Chapter  Google Scholar 

  24. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the Electrical Activity in the Heart. Monographs in Computational Science and Engineering, vol. 1. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  25. Wang, D., Kirby, R.M., Johnson, C.R.: Resolution strategies for the finite-element-based solution of the ECG inverse problem. IEEE Trans Biomed. Eng. 57(2), 220–237 (2010)

    Article  Google Scholar 

  26. Wang, Y., Rudy, Y.: Applications of the method of fundamental solutions to potential-based inverse electrocardiography. Ann. Biomed. Eng. 34(8), 1272–1288 (2006)

    Article  Google Scholar 

  27. Wang, D., Kirby, R.M., Johnson, C.R.: Finite element discretization strategies for the inverse electrocardiographic (ECG) problem. In: Dössel, O., Schlegel, W.C. (eds.) WC 2009. IFMBE Proceedings, vol. 25, pp. 729–732. Springer, Heidelberg (2009)

    Google Scholar 

  28. Wang, Y., Yagola, A., Yang, C.: Optimization and Regularization for Computational Inverse Problems and Applications. Higher Education Press, Beijing (2011)

    Book  Google Scholar 

  29. Charulatha, R., Rudy, Y.: Electrocardiographic imaging: I. Effect of torso inhomgeneities on body surface electrocardiographic potentials. J. Cardiovasc. Electrophysiol. 12, 229–240 (2001)

    Article  Google Scholar 

  30. Gavgani, A. M., and Dogrusoz, Y. S.: Use of genetic algorithm for selection of regularization parameters in multiple constraint inverse ECG problem. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 985–988. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lopez, A., Cienfuegos, M., Ainseba, B., Bendahmane, M. (2014). PSO with Tikhonov Regularization for the Inverse Problem in Electrocardiography. In: Legrand, P., Corsini, MM., Hao, JK., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2013. Lecture Notes in Computer Science(), vol 8752. Springer, Cham. https://doi.org/10.1007/978-3-319-11683-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11683-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11682-2

  • Online ISBN: 978-3-319-11683-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics