Skip to main content

Local Optima Networks of the Permutation Flow-Shop Problem

  • Conference paper
  • First Online:
Artificial Evolution (EA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8752))

Abstract

This article extracts and analyzes local optima networks for the permutation flow-shop problem. Two widely used move operators for permutation representations, namely, swap and insertion, are incorporated into the network landscape model. The performance of a heuristic search algorithm on this problem is also analyzed. In particular, we study the correlation between local optima network features and the performance of an iterated local search heuristic. Our analysis reveals that network features can explain and predict problem difficulty. The evidence confirms the superiority of the insertion operator for this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Auger, A., Hansen, N.: Performance evaluation of an advanced local search evolutionary algorithm. In: The 2005 IEEE Congress on Evolutionary Computation, 2005, vol. 2, pp. 1777–1784. IEEE (2005)

    Google Scholar 

  2. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  3. Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Characterization and modeling of weighted networks. Phys. A Stat. Mech. Appl. 346(1), 34–43 (2005)

    Article  Google Scholar 

  4. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Oper. Res. Lett. 16, 101–113 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cahon, S., Melab, N., Talbi, E.G.: Paradiseo: A framework for the reusable design of parallel and distributed metaheuristics. J. Heuristics 10, 357–380 (2004)

    Article  Google Scholar 

  6. Daolio, F., Tomassini, M., Verel, S., Ochoa, G.: Communities of minima in local optima networks of combinatorial spaces. Phys. A Stat. Mech. Appl. 390, 1684–1694 (2011)

    Article  Google Scholar 

  7. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of the quadratic assignment problem. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  8. Gilmour, S.G.: The interpretation of mallows’s \(\rm C_p\)-statistic. The Statistician 45, 49–56 (1996)

    Article  Google Scholar 

  9. Hoos, H., Stützle, T.: Stochastic local search: Foundations and applications. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  10. Jones, T.: Evolutionary algorithms, fitness landscapes and search. Ph.D. Thesis, The University of New Mexico (1995)

    Google Scholar 

  11. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987)

    Article  MathSciNet  Google Scholar 

  12. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, International Series in Operations Research and Management Science, vol. 57, pp. 321–353. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  13. Lumley, T., Miller, A.: Leaps: Regression subset selection (2009). http://CRAN.R-project.org/package=leaps

  14. Marmion, M.-E., Dhaenens, C., Jourdan, L., Liefooghe, A., Verel, S.: On the neutrality of flowshop scheduling fitness landscapes. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 238–252. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Newman, M.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ochoa, G., Verel, S., Tomassini, M.: First-improvement vs. best-improvement local optima networks of NK landscapes. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6238, pp. 104–113. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013). http://www.R-project.org/. ISBN 3-900051-07-0

  18. Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruiz, R., Maroto, C.: A comprehensive review and evaluation of permutation flowshop heuristics. Eur. J. Oper. Res. 165(2), 479–494 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stadler, P.: Fitness landscapes. Biol. Evol. Stat. Phys. 585, 183–204 (2002)

    Article  Google Scholar 

  21. Stillinger, F.: A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995)

    Article  Google Scholar 

  22. Taillard, E.: Some efficient heuristic methods for the flow shop sequencing problem. Eur. J. Oper. Res. 47(1), 65–74 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tomassini, M., Verel, S., Ochoa, G.: Complex-network analysis of combinatorial spaces: The NK landscape case. Phys. Rev. E 78(6), 066114 (2008)

    Article  Google Scholar 

  24. Verel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local Optima Networks with Escape Edges. In: Procedings of International Conference on Artificial Evolution (EA-2011). pp. 10–23. Angers, France (Oct 2011).

    Google Scholar 

  25. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

    Article  Google Scholar 

  26. Watson, J., Barbulescu, L., Whitley, L., Howe, A.: Contrasting structured and random permutation flow-shop scheduling problems: search-space topology and algorithm performance. INFORMS J. Comput. 14(2), 98–123 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Daolio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Daolio, F., Verel, S., Ochoa, G., Tomassini, M. (2014). Local Optima Networks of the Permutation Flow-Shop Problem. In: Legrand, P., Corsini, MM., Hao, JK., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2013. Lecture Notes in Computer Science(), vol 8752. Springer, Cham. https://doi.org/10.1007/978-3-319-11683-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11683-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11682-2

  • Online ISBN: 978-3-319-11683-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics