Skip to main content

Detection and Segmentation of Clustered Objects by Using Iterative Classification, Segmentation, and Gaussian Mixture Models and Application to Wood Log Detection

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8753))

Included in the following conference series:

Abstract

There have recently been advances in the area of fully automatic detection of clustered objects in color images. State of the art methods combine detection with segmentation. In this paper we show that these methods can be significantly improved by introducing a new iterative classification, statistical modeling, and segmentation procedure. The proposed method used a detect-and-merge algorithm, which iteratively finds and validates new objects and subsequently updates the statistical model, while converging in very few iterations.

Our new method does not require any a priori information or user input and works fully automatically on desktop computers and mobile devices, such as smartphones and tablets. We evaluate three different kinds of classifiers, which are used to substantially reduce the number of false positive matches, from which current state of the art methods suffer. Experiments are performed on a challenging database depicting wood log piles, with objects of inhomogeneous sizes and shapes. In all cases our method outperforms the current state of the art algorithms with a detection rate above 99 % and a false positive rate of less than 0.4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benfield, M.C., Grosjean, P., Culverhouse, P.F., Irigoien, X., Sieracki, M.E., Lopez-Urrutia, A., Dam, H.G., Hu, Q., Davis, C.S., Hansen, A., et al.: RAPID: research on automated plankton identification. Oceanography 20, 172–187 (2007)

    Article  Google Scholar 

  2. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In: Proceedings. Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 1, pp. 105–112. IEEE (2001)

    Google Scholar 

  3. Buch, N., Orwell, J., Velastin, S.A.: 3D extended histogram of oriented gradients (3DHOG) for classification of road users in urban scenes. In: BMVC. British Machine Vision Association (2009)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893, June 2005

    Google Scholar 

  5. Fink, F.: Foto-optische Erfassung der Dimension von Nadelrundholzabschnitten unter Einsatz digitaler, bildverarbeitender Methoden. Ph.D. thesis, Albert-Ludwigs-Universitt (2004)

    Google Scholar 

  6. Grau, V., Mewes, A., Alcaniz, M., Kikinis, R., Warfield, S.K.: Improved watershed transform for medical image segmentation using prior information. IEEE Trans. Med. Imag. 23(4), 447–458 (2004)

    Article  Google Scholar 

  7. Gutzeit, E., Ohl, S., Kuijper, A., Voskamp, J., Urban, B.: Setting graph cut weights for automatic foreground extraction in wood log images. In: VISAPP (2), pp. 60–67 (2010)

    Google Scholar 

  8. Gutzeit, E., Ohl, S., Voskamp, J., Kuijper, A., Urban, B.: Automatic wood log segmentation using graph cuts. In: Richard, P., Braz, J. (eds.) VISIGRAPP 2010. CCIS, vol. 229, pp. 96–109. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Gutzeit, E., Voskamp, J.: Automatic segmentation of wood logs by combining detection and segmentation. In: Bebis, G., et al. (eds.) ISVC 2012, Part I. LNCS, vol. 7431, pp. 252–261. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Herbon, C., Tönnies, K., Stock, B.: Adaptive planar and rotational image stitching for mobile devices. In: Proceedings of the 5th ACM Multimedia Systems Conference, pp. 213–223. ACM (2014)

    Google Scholar 

  11. Hu, Q., Davis, C.: Automatic plankton image recognition with co-occurrence matrices and support vector machine. Mar. Ecol. Progr. Ser. 295, 21–31 (2005)

    Article  Google Scholar 

  12. Khan, S.M.: Multi-view approaches to tracking, 3D reconstruction and object class detection. Ph.D. thesis, University of Central Florida (2008)

    Google Scholar 

  13. Kim, J.B., Kim, H.J.: Multiresolution-based watersheds for efficient image segmentation. Pattern Recogn. Lett. 24(1), 473–488 (2003)

    Article  Google Scholar 

  14. Lombaert, H., Sun, Y., Grady, L., Xu, C.: A multilevel banded graph cuts method for fast image segmentation. In: Tenth IEEE International Conference on Computer Vision, 2005. ICCV 2005, vol. 1, pp. 259–265. IEEE (2005)

    Google Scholar 

  15. Noonpan, V., Chaisricharoen, R.: Wide area estimation of piled logs through image segmentation. In: 2013 13th International Symposium on Communications and Information Technologies (ISCIT), pp. 757–760, Sept 2013

    Google Scholar 

  16. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994, vol. 1 - Conference A: Computer Vision & Image Processing, vol. 1, pp. 582–585, Oct 1994

    Google Scholar 

  17. Ongun, G., Halici, U., Leblebicioglu, K., Atalay, V., Beksac, M., Beksaç, S.: An automated differential blood count system. In: Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE, vol. 3, pp. 2583–2586. IEEE (2001)

    Google Scholar 

  18. Piuri, V., Scotti, F.: Morphological classification of blood leucocytes by microscope images. In: 2004 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 2004. CIMSA, pp. 103–108. IEEE (2004)

    Google Scholar 

  19. Rahman, S., Yella, S., Dougherty, M.: Image processing technique to count the number of logs in a timber truck. In: Proceedings of the IASTED Conference on Signal and Image Processing, USA (2011)

    Google Scholar 

  20. Ross, N.E., Pritchard, C.J., Rubin, D.M., Duse, A.G.: Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med. Biol. Eng. Comput. 44(5), 427–436 (2006)

    Article  Google Scholar 

  21. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001. CVPR 2001, vol. 1, pp. I-511–I-518 (2001)

    Google Scholar 

  22. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  23. Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Technical report, Microsoft Research (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Herbon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Herbon, C., Tönnies, K., Stock, B. (2014). Detection and Segmentation of Clustered Objects by Using Iterative Classification, Segmentation, and Gaussian Mixture Models and Application to Wood Log Detection. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-11752-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-11751-5

  • Online ISBN: 978-3-319-11752-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics