Abstract
In this paper we present a novel approach for probabilistically exploring and modeling vascular networks in 3D angiograms. For modeling the vascular morphology and topology a graph-like particle model is used. Each particle represents the intrinsic properties of a small fraction of a vessel including position, orientation and scale. Explicit connections between particles determine the network topology. In evaluation using simulated as well as real X-ray and time-of-flight MRI angiograms the proposed method was able to accurately model the vascular network.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
FARSIGHT Project: http://www.farsight-toolkit.org/
- 2.
AneuriskWeb project http://ecm2.mathcs.emory.edu/aneuriskweb
References
Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21(2), 61–75 (2002)
Basu, S., Kulikova, M., Zhizhina, E., Ooi, W.T., Racoceanu, D.: A stochastic model for automatic extraction of 3D neuronal morphology. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I. LNCS, vol. 8149, pp. 396–403. Springer, Heidelberg (2013)
Bauer, C., Bischof, H.: A novel approach for detection of tubular objects and its application to medical image analysis. In: Rigoll, G. (ed.) DAGM 2008. LNCS, vol. 5096, pp. 163–172. Springer, Heidelberg (2008)
Bogunović, H., Pozo, J.M., Villa-Uriol, M.C., Majoie, C.B., van den Berg, R., van Andel, H.A.G., Macho, J.M., Blasco, J., Román, L.S., Frangi, A.F.: Automated segmentation of cerebral vasculature with aneurysms in 3DRA and TOF-MRA using geodesic active regions: an evaluation study. Med. Phys. 38, 210 (2011)
Chai, D., Forstner, W., Lafarge, F.: Recovering line-networks in images by junction-point processes. In: Proceedings of the CVPR, IEEE (2013)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)
Gülsün, M.A., Tek, H.: Robust vessel tree modeling. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 602–611. Springer, Heidelberg (2008)
Hastings, W.K.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57(1), 97–109 (1970)
Lacoste, C., Descombes, X., Zerubia, J.: Point processes for unsupervised line network extraction in remote sensing. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1568–1579 (2005)
Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)
Reisert, M., Burkhardt, H.: Harmonic filters for generic feature detection in 3D. In: Denzler, J., Notni, G., Süße, H. (eds.) Pattern Recognition. LNCS, vol. 5748, pp. 131–140. Springer, Heidelberg (2009)
Reisert, M., Mader, I., Anastasopoulos, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. NeuroImage 54(2), 955–962 (2011)
Shikata, H., McLennan, G., Hoffman, E.A., Sonka, M.: Segmentation of pulmonary vascular trees from thoracic 3D CT images. J. Biomed. Imaging 2009, 24 (2009)
Tyrrell, J.A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R.K., Roysam, B.: Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Trans. Med. Imaging 26(2), 223–237 (2007)
Acknowledgment
This work was supported by Bioinformatics for Brain Sciences under the Strategic Research Program for Brain Sciences, MEXT (Japan). The work of M. Reisert is supported by the Deutsche Forschungsgemeinschaft (DFG), grant RE 3286/2-1.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Skibbe, H., Reisert, M., Ishii, S. (2014). Efficient Metropolis-Hasting Image Analysis for the Location of Vascular Entity. In: Jiang, X., Hornegger, J., Koch, R. (eds) Pattern Recognition. GCPR 2014. Lecture Notes in Computer Science(), vol 8753. Springer, Cham. https://doi.org/10.1007/978-3-319-11752-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-319-11752-2_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-11751-5
Online ISBN: 978-3-319-11752-2
eBook Packages: Computer ScienceComputer Science (R0)